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What is a Generalized Linear Model (GLM)?
e GLM is a classical statistical model, generalizing linear regression:

E(ylx) = ¢(x' B)
where ¢ is a known, smooth, monotonic link function.

o Common choices include:

1
14+et
Poisson regression: ¢(t) = &'

logistic regression: ¢(t) =

e In statistics, we care not just about prediction, but also:

Is a feature x; truly associated with the outcome?
Is the effect positive or negative, and how strong?
What is the confidence interval for 3;?

e High-dimensional example: gene expression analysis
y = whether a patient responds to a drug (yes/no)
x = expression levels of 10,000 genes
Goal: Which genes affect response? How strong is the signal? Can we
quantify uncertainty?



High-dimensional Generalized Linear Models

Data: (y; € R,x; € RP)2, "K' P

Model:
x~ N 3), E(ylx) = 6(87x), var(ylx) = 5°(x)

High-dimensional regime:

p

Goal: estimate and conduct inference on

(i) B (i)p'=s



What Makes an Estimator “Good” ? (from a Statistics Viewpoint)

e [ is called consistent if it converges to the true 3 as n — oo.
e Root-n consistency:

I8 = Bll = O,(1/V/n)
e Root-n Consistent & Asymptotic Normality (1/n CAN):

Vn(B - B) % N (0, Cov)

That is, for each coordinate j=1,...,p:

V(B = B) 5 N(0, %)
e /n CAN enables:

Confidence intervals —for each coordinate j:

A 3
B+ Z1—a/2 " =

Jn

where z,_, /5 is the standard normal quantile.
Hypothesis testing -e.g., test Hp : 8; =0



A General Theme in the Literature: Debiasing

In high dimensions, many works build on a biased initial estimator ,éinit,
often obtained via MLE or Penalized MLE:

R 1 <
Binit €Epere {n Z Uyi xi; B) + &x (,3)}
=1
This leads to a debiased estimator of the form:

Bdb = } (Binit - bi%s)

scale

There is a long list of works for logistic regression and other types of
GLMs when p/n — §

Sur & Candés, PNAS 19; Zhao, Sur & Candés, Bernoulli 23; Massa et al.
22 and many others

In the general form in Bellec 23, and (to our knowledge) first appeared for
Ridge Penalized MLE in Pragya Sur’s thesis:

R R 1 <& R
ﬁdb = ,Binit + EE ! lelvz(yh X;rﬁinit)
where h is derived as part of a fixed-point system using Approximate

Message Passing(AMP) machinery
(Sur & Candés, PNAS 19; Zhao, Sur & Candés, Bernoulli 23)



Theoretical guarantees

Theorem 1 (Bellec 23)

Under regularity conditions, /n-consistency & CAN in aggregated sense:
£JNN(071)1J:17 s P

p

;ZE {(\[(2 )J,J (rﬂdb,f t3;) —fj> ] -0

j=1

where F, t, i are part of the solution to the AMP fixed-point equations

e Entry-wise CAN is still an open question for ﬁdb for general GLM and
p>n.

e Our estimator can achieve Entry-wise CAN!



Our Contribution: Entrywise Inference without Sparsity

e We propose a new estimator based on method of moments:
Classical, easy-to-understand and easy-to-extend framework;
No sparsity;
No difficult AMP to learn;
No tuning parameters
Consistent estimator of the variance.

e Under known X, our method achieves:

Entrywise /n CAN,;
Extensible to non-Gaussian x

e Under unknown X, our method achieves:
when p < n, Entrywise \/n consistent;
Extensible to non-Gaussian x

when p > n, Entrywise consistent;
Extensible to non-Gaussian x



Outline

Our proposal — Moments-based estimators



Roadmap: From Easy to Hard

Case | Gaussian, known ¢t = 0 & known X
X~ NP(07 Z)
I
Case Il Gaussian, unknown p & known X
x ~ Np(p, 2), p unknown
I

Case Il Gaussian, unknown g & unknown X
x ~ Np(pu, X), both p and X unknown

¢

Case IV Non-Gaussian, unknown g & unknown 3
x non-Gaussian, both g and 3 unknown

¢

Inference Bootstrap variance estimators
Bootstrap and Delta method



GLM model with Gaussian Covariates
Assume X is known. Consider the GLM model with Gaussian covariates:

X~ No(1, ), Ely | x] = ¢(8"%)
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GLM model with Gaussian Covariates
Assume X is known. Consider the GLM model with Gaussian covariates:

x~ Np(1, B), Ely [ x] = ¢(8'x)
Let's check
Efxy] = E[xE[y | x]] = E[x¢(8 " x)]

Stein's Lemma to rescue!

E[xy] = Ex¢(8 ' x)] = E[¢'(8"x)|Z B+ E[¢(8 x)|p
Here,

B x~N(@B u B EB)

Denote:
Ao =BT, 15:=B"28, fils,5)=Els" (B x)]

Note fi(Ag,73) is known since ¢ is known. Then:

The Redemption of Stein's Lemma

Elxy] = f1(A\s,75)Z B +fo(As, 751 (1)




Identification under Case I: Gaussian, known g = 0 & known X

Elxy] = fi(As,72) 2B+ o(As, 1208, As=B"mu, 5=0"%8
When p = 0, the expression simplifies:
Elxy] = £1(0,73)= 8



Identification under Case I: Gaussian, known g = 0 & known X

Elxy] = fi(As,13)2 B+ fo(As, 120, As=B"p, 15 =838
When p = 0, the expression simplifies:
Elxy] = £1(0,73)= 8

Identification Equations for = 0

Mxy,2 ‘= ]E[le;r 3 1X2y2

I
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Here, \II(ﬂé) is strictly monotonic if ¢ is strictly monotonic —so 72 can be
recovered via inversion.



Identification under Case I: Gaussian, known g = 0 & known X

Elxy] = fi(As,13)2 B+ fo(As, 120, As=B"p, 15 =838
When p = 0, the expression simplifies:
Elxy] = £1(0,73)= 8

Identification Equations for = 0

Mxy,2 ‘= ]E[}HX;r 3 1X2y2

J
mﬁj = E[yXT}E_Iej = f1(07 "//é) : Bj

Here, \II(“é) is strictly monotonic if ¢ is strictly monotonic —so 72 can be
recovered via inversion.

Let Un1[h] := 237 | h(Z) and Un2[h] = ﬁ > iz N(Zi, Z;) where

Zi = (yi,%i).

Estimators for 4 = 0

fy o i= Unaly1x{ 27 'xoys], g, = Una[y1x{ =7 '¢]

£2 =1/ A _ rhﬁj (3)
B = v (mxy,2)7 ﬂj =S 7f1(0’ ’3’%)



Identification under Case Il: Gaussian, unknown g & known ¥

Identification Equations for Unknown g

m; '=my = fo(Ag,"/é),

M3 = Myy,2 + M) - M2 — 2 My - My x = £1(A3,73) - V3>
Yem : (g, 73) = (mi,mz). (4)
m,, = Ex 'S le=p'2'eg=v'e =1,

mg, == Elyx ' | e = fo(\g,73) - v + f1(\s, 73) - By




Identification under Case Il: Gaussian, unknown g & known ¥

Identification Equations for Unknown g

m; '=my = fo(Ag,"/é),

M3 = Myy,2 + M) - M2 — 2 My - My x = £1(A3,73) - V3>
Yem : (g, 73) = (mi,mz). (4)
m,, = Ex 'S le=p'2'eg=v'e =1,

mg, == Elyx ' | e = fo(\g,73) - v + f1(\s, 73) - By

Estimators for Unknown g

o PSS s2 PN
1= Ay = Unalyl, M2 = fixy,2+ My - Mx2 — 2 Ay - Mgy x,

ﬁ7x,2 = Un72[xrz_1)(2], mxy,x o= Un,2[Y1X1rE_1XQ],
ﬁ"xy,Q = Un,Q[yl)(;rE_lxng], ﬁh’j = Uml[xT]E_lej, (5)
mﬁj = Uml[yXT]Zilej.

~ 4 . g, —fo(Ag, V%) - iy,
(X8, 72) = U y(m, ma), Bji= ————— i,
p f1(\g,78%)




\/n-consistency and CAN

Theorem 2 (C., Liu, Mukherjee, 24)

Under some mild conditions, when x ~ N(u, 3), the following is a
\/n-consistent and CAN estimator of (3, A\g,73)

~ — A 4 mg; — fo(:\ﬁﬂbZ) My,
(A8:73) = Vgly(m, m2), B = ——— -
f1(Ag,787)

Proof sketch(Delta method).

\/n-consistency & CAN follow from (1) the /n-consistency & CAN of
U-statistics; (2) Yeium is a diffeomorphism O

15/ 28
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e |dentification Equations will be invariant.
e The knowledge of 3 influences the construction of moment estimators.

e One lazy method involves using a sample splitting strategy with weighted
sample covariance under 1 Ul = [n], || = || = n/2

Moment Estimators with Unknown X (Sample Splitting)

71
= (ﬂ ) E y11X11 XiyYia
2 \2

i1 #iz €l (6)

. = 2
2::,_ _1ZXJ X ) (X — %), x,Q::Eij.

J€El2 J€lz




Identification under Case Ill: Gaussian, unknown g & unknown X

e |dentification Equations will be invariant.
e The knowledge of 3 influences the construction of moment estimators.

e One lazy method involves using a sample splitting strategy with weighted
sample covariance under 1 Ul = [n], || = || = n/2

Moment Estimators with Unknown X (Sample Splitting)

~ 71
Mxy,2 = Z y'lxll XiyYia
2 (5 B ) i1 #iz €l (6)

z _ 2
2::,_ _1ZXJ %1,) (% — Xp,) ", x,Q::Eij.

J€El2 J€lz

e When p > n/2, one can apply multiple rounds of sample splitting (e.g.,
leave-2-out) to construct unbiased estimators.
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e An alternative method involve the Chebyshev polynomial approximate first
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Moment Estimators Unknown X (Chebyshev) p = 0
J
2_1 ~ Z C/E’,
=0

J +2
~ . T T
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Identification under Case Ill: Gaussian, unknown g & unknown X

e The sample splitting strategy will no longer useful when p > 7.

e An alternative method involve the Chebyshev polynomial approximate first
considered in Kong and Valiant 18

Moment Estimators Unknown X (Chebyshev) p = 0

J
> Z ax
1=0
J 2 (7)
ﬁ7xy,2 = Z C/Un,/+2 |:y1X1T (H XsX5T> X2Y2:| .
1=0 s=3

e under same condition in Theorem 2, our estimators are consistent.
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Identification under Case IV: Non-Gaussian

e When x validate the Gaussian assumption, the Identification Equations
above will no longer hold.

e But under some assumption, Identification Equations can hold
approximately

Lemma 1 (C., Liu, Mukherjee, 24)

When X71/2(X — 1) has zero mean and unit variance, the above Identification

Equations approximately with approximation error O (p_3/4) =0 (n_3/4) as
n— oo.

e Thus, above results of \/n-consistency or consistency still hold.

e As for CAN property we need some assumption on limiting distribution on
B and p: \/521/2,8 8 b and \/;32’1/2;1, W8 4 where b ~ pandu~p
respectively for some probability measures p and o supported on R and
both p and p have bounded first and second moments.
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Bootstrap variance estimators

e Confidence intervals can also be built by using the following bootstrap
procedure

e Taking the estimator 1 = U 2[y1X{ X" 'Xa2y2] of m = E[yx |Z 7 E[xy]
as an example

e Drawing weights {W(b>},’-’:1 ~ multinom(n;1/n,--- ,1/n) for b=1,--- | B

i



Bootstrap variance estimators

Confidence intervals can also be built by using the following bootstrap
procedure

Taking the estimator 1 := Uy 2[y1x{ 3~ x2y2] of m := E[yx' |2~ E[xy]
as an example

Drawing weights {W§b>},'-1:1 ~ multinom(n;1/n,--- ,1/n) for b=1,--- | B
For b=1,---, B, compute

m® = [U,,’g[Wlb ylxlTEﬂWéb)xzyg],

i hier = Un2[(wh” = 1yix] 371 (wg” — 1)xayo]



Bootstrap variance estimators

Confidence intervals can also be built by using the following bootstrap
procedure

Taking the estimator 1 := Uy 2[y1x{ 3~ x2y2] of m := E[yx' |2~ E[xy]
as an example

Drawing weights {W(b>}, 1 ~ multinom(n;1/n,--- ,1/n) for b=1,--- | B

For b=1,---, B, compute
i ® = Up o [wiy1x] B wi xay2],
tidoncer = Un2[(w{” — Dyix] 71 (w§” — D)xaya]

Estimate the variance of m by

B B y 2 9 B B 2
Z < Z n®) ) ey Z <A ile)zlter - E center)

b=1

Uo\
Uo\
Uo
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A peek at some numerical results: GLMs
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Boostrap variance estimator: GLM

Table: Bootstrap Variance Estimators vs. Monte Carlo Variances under (Gaussian
design and dense regression coefficients), Based on 500 Monte Carlo Simulations with
n = 5000, p/n=1.2. Here p is unknown but X is known.

MC Var Mean Est. Var MeanEstVar - giq Est. Var  MSE
EA 4.81e-05 5.01e-05 1.041 2.24e-06  3.00e-06
E[AXT]Z 1y 4.38e-04 4.77¢-04 1.091 7.04e-05  8.08e-05
E[AXT]Z'E[AX] 1.85e-04 1.87e-04 1.009 2.83e-05  2.84e-05
E[AXT|Z7'E[AX] 1.41e-04 1.36e-04 0.965 2.03e-05  2.09e-05
a’p 2.96e-03 3.01e-03 1.017 1.62e-03  1.62e-03
a Ta 6.42e-02 6.76e-02 1.053 3.69e-02  3.71e-02
a1 1.15e-03 1.20e-03 1.043 1.02e-04  1.13e-04
@100 1.13e-03 1.20e-03 1.060 1.08e-04  1.28e-04
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theory under Gaussian design



A peek at some numerical results: Estimating E[y] under MAR

Compared with Celentano & Wainwright, 23: based on debiased Lasso + AMP
theory under Gaussian design

Our approach: a system of moment equations can be used to identify
1 = E[y] = 8" w in the following model:

y =B x+e¢,t|x ~ Bern(¢(a x))
based on estimating the following moments
E(t), E(ty), E(x" )= "E(x), E(tx )X 'E(x),
E(tx )X 'E(xt), E(x")E'E(xty), E(tx " )X E(xty)



Oracle ASCW Empirical SCA
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Conclusion and open ends

e \We propose a new estimator based on method of moments:

No sparsity;

No difficult AMP to learn;

No tuning parameters

Consistent estimator of the variance;

Classical, easy-to-understand and easy-to-extend framework.

e Open ends:
o More general designs — semi-random, right orthogonally invariant, etc.
o Better numerical algorithms for inverting the nonlinear maps?
o Model misspecification

O«



Thank you!

Xingyu's Homepage:  https://cxy0714.github.io/
arXiv Paper:  https://arxiv.org/abs/2408.06103
GitHub Repo: https://github.com/cxy0714/Method-of-Moments-Inference-for-GLMs
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