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Statistical Inference for High-Dimensional GLMs

e Observations: (yi € Y C R,x; € RP)[; e p

e P parameterized as:
x ~ Px, E(y[x) = ¢(8" ), var(y[x) = 0*(x)

x has mean p and covariance ¥
¢: monotonically increasing & three-times differentiable

p

e Asymptotic regime: o d € (0,+00) as n — oo (but allow S —0)

Qn1l

How to conduct inference on the linear form v' 3 given any direction v and the
quadratic form ||8||2 = 87287

e linear form v '3 contains 3; = € B when v = g; is the stadard basis

e quadratic form 87 X3 = var(3 " x) informs us the Signal-to-Noise Ratio
(SNR) or the signal strength

e 3 is taken to be known until the very end, following the recent literature
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A General Theme in the Literature: Debiasing

e In high dimensions, many works builds on a biased initial estimator (e.g.,
MLE or Penalized MLE) B, yielding Ba» = L (ﬁ.n.t - b|as)

e There is a long list of works for logistic regression and other types of
GLMs when p/n — §
Sur & Candés, PNAS 19; Zhao, Sur & Candés, Bernoulli 23; Massa et al.
22 and many others

e In the general form in Bellec 23 and (to our knowledge) first appeared for
Ridge Penalized MLE in Pragya Sur's thesis

R R 1« R
Bdb - /Binit + EE ! Exive(yh X;rﬁinit)
where h is a part of the solution to a system of fixed point equations,

derived by using the Approximate Message Passing machinery (Sur &
Candés, PNAS 19; Zhao, Sur & Candés, Bernoulli 23)



Theoretical guarantees

Theorem 1 (Bellec 23)

Under regularity conditions, /n-consistency & CAN in aggregated sense:
£JNN(071)1J:17 s P

;;E l:(\f(z )Jd (rIBdb,J %BJ) - fj) :| —0

where F, t, i are part of the solution to the AMP fixed-point equations

e Entry-wise CAN is still an open question for ﬁdb for general GLM and
p>n.

e Our estimator can achieve Entry-wise CAN!
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Roadmap: From Easy to Hard

Case | Gaussian, known ¢t = 0 & known X
X~ NP(07 Z)
I
Case Il Gaussian, unknown p & known X
x ~ Np(p, 2), p unknown
I

Case Il Gaussian, unknown g & unknown X
x ~ Np(pu, X), both p and X unknown

¢

Case IV Non-Gaussian, unknown g & unknown 3
x non-Gaussian, both g and 3 unknown

¢

Inference Bootstrap variance estimators
Bootstrap and Delta method
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GLM model with Gaussian Covariates

Assume X is known. Consider the GLM model with Gaussian covariates:

x~ Np(, ), Ely | x] = ¢(8"x)
Let's check
Elxy] = ExEly | x]] = E[x¢(8" x)]

Stein’s Lemma to rescue!

E[xy] = Ex¢(8 'x)] = E[¢'(8 x)|Z B + E[¢(8 ' x)|u

Here,
B x~N(@B p18]%)
Denote:
No=BTm, i=BlIE, (0, 73) = Els?(87x)
Then:

Elxy] = f1(A\g,75)E B + fo(A\g, 75) 1

(1)
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Identification under Case I: Gaussian, known g = 0 & known X

Elxy] = f1(A\3,75)2 B + fo(A\s, 15)

When p = 0, the expression simplifies:

Elxy] = f1(0,75)= 8

Identification Equations for = 0

Myy 2 = E[y1XIE_1X2y2

]
mg; = E[yxT]Eflej = 11(0, “//23) B

Here, \I!(ﬁé) is strictly monotonic if ¢ is strictly monotonic —so fyé can be
recovered via inversion.

Estimators for u = 0

myy 2 = Una[y1x{ B~ 'xays], g, :=Un1[y1x] 2~ 'e]

N - . o mpg; 3
=V ), A= e ¥
1 a’yﬁ
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A back-of-the-envelope calculation

e Let's take a closer look at the quadratic form ||3||%

1113 = Un [y1x] 5 5oy

e Since it is unbiased, we only need to compute its variance, by Hoeffding
decomposition,

p/n—3§
£

+n2

S
S

var (118112) <
e In terms of CAN, one can use martingale CLT to show
Va (18I - 181%) ~ N (0,°)

for some v > 0 if 3 W2 B and spec(X) %2 S, where spec(X) is the
spectral distribution of X
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Identification Equations for Unknown g

m; '=my = fo(Ag,"/é),

M3 = Myy,2 + M) - M2 — 2 My - My x = £1(A3,73) - V3>
Yem : (g, 73) = (mi,mz). (4)
m,, = Ex 'S le=p'2'eg=v'e =1,

mg, == Elyx ' | e = fo(\g,73) - v + f1(\s, 73) - By

Estimators for Unknown g

o PSS s2 PN
1= Ay = Unalyl, M2 = fixy,2+ My - Mx2 — 2 Ay - Mgy x,

ﬁ7x,2 = Un72[xrz_1)(2], mxy,x o= Un,2[Y1X1rE_1XQ],
ﬁ"xy,Q = Un,Q[yl)(;rE_lxng], ﬁh’j = Uml[xT]E_lej, (5)
mﬁj = Uml[yXT]Zilej.

~ 4 . g, —fo(Ag, V%) - iy,
(X8, 72) = U y(m, ma), Bji= ————— i,
p f1(\g,78%)




\/n-consistency and CAN

Theorem 2 (C., Liu, Mukherjee, 24)

Under some mild conditions, when x ~ N(u, 3), the following is a
\/n-consistent and CAN estimator of (3, A\g,73)

~ — A 4 mg; — fo(:\ﬁﬂbZ) My,
(A8:73) = Vgly(m, m2), B = ——— -
f1(Ag,787)

Proof sketch(Delta method).

\/n-consistency & CAN follow from (1) the /n-consistency & CAN of
U-statistics; (2) Yeium is a diffeomorphism O

14/ 26
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~ 1 _ _ _ 2
Y= > (xi—Ep)(xi—%p)", Xy = . D%
2
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Identification under Case Ill: Gaussian, unknown g & unknown X

e lIdentification Equations will be invariant.
e The knowledge of ¥ influences the construction of moment estimators.

e One lazy method involves using a sample splitting strategy with weighted

sample covariance under L U lx = [n], || = |k| = n/2
Moment Estimators with Unknown X (Sample Splitting)
A 1 TS -1
Myy,2 = m ' Z YiXip 2 XiyVigs
i #iz€h
= 1 - 2 (6)
3= Fpe— Z(xj —Xp)(xj—Xp) , Xip = . ij.
2P j€lz j€l

e Adding condition § > p + 3, our sample splitting estimators are
\/n-consistent.
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Identification under Case Ill: Gaussian, unknown g & unknown X

e The sample splitting strategy will no longer useful when p > 7.

e An alternative method involve the Chebyshev polynomial approximate first
considered in Kong and Valiant 18

Moment Estimators Unknown X (Chebyshev) p = 0

J
> Z ax
1=0
J 2 (7)
ﬁ7xy,2 = Z C/Un,/+2 |:y1X1T (H XsX5T> X2Y2:| .
1=0 s=3

e under same condition in Theorem 2, our estimators are consistent.
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Identification under Case IV: Non-Gaussian

e When x validate the Gaussian assumption, the Identification Equations
above will no longer hold.

e But under some assumption, Identification Equations can hold
approximately

Lemma 1 (C., Liu, Mukherjee, 24)

When X71/2(X — 1) has zero mean and unit variance, the above Identification

Equations approximately with approximation error O (p_3/4) =0 (n_3/4) as
n— oo.

e Thus, above results of \/n-consistency or consistency still hold.

e As for CAN property we need some assumption on limiting distribution on
B and p: \/521/2,8 8 b and \/;32’1/2;1, W8 4 where b ~ pandu~p
respectively for some probability measures p and o supported on R and
both p and p have bounded first and second moments.
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Bootstrap variance estimators

Confidence intervals can also be built by using the following bootstrap
procedure

Taking the estimator 1 := U, 2[y1x{ £~ 'x2y2] of m := E[yx " |~ E[xy]
as an example

Drawing weights {W(b>}, 1 ~ multinom(n;1/n,--- ,1/n) for b=1,--- | B
For b=1,--- B, compute

m® = [U,,yg[ng)ylxlTEflwéb)myg],

e = Una[(wW” = Dyl B7H(wg” — 1xaya]

Estimate the variance of m by

B B y 2 9 B B 2
Z < Z n®) ) ey Z <A ile)zlter - E center)

b=1

Uo\
Uo\
Uo
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A peek at some numerical results: GLMs
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Boostrap variance estimator: GLM

Table: Bootstrap Variance Estimators vs. Monte Carlo Variances under (Gaussian
design and dense regression coefficients), Based on 500 Monte Carlo Simulations with
n = 5000, p/n=1.2. Here p is unknown but X is known.

MC Var Mean Est. Var MeanEstVar - giq Est. Var  MSE
EA 4.81e-05 5.01e-05 1.041 2.24e-06  3.00e-06
E[AXT]Z 1y 4.38e-04 4.77¢-04 1.091 7.04e-05  8.08e-05
E[AXT]Z'E[AX] 1.85e-04 1.87e-04 1.009 2.83e-05  2.84e-05
E[AXT|Z7'E[AX] 1.41e-04 1.36e-04 0.965 2.03e-05  2.09e-05
a’p 2.96e-03 3.01e-03 1.017 1.62e-03  1.62e-03
a Ta 6.42e-02 6.76e-02 1.053 3.69e-02  3.71e-02
a1 1.15e-03 1.20e-03 1.043 1.02e-04  1.13e-04
@100 1.13e-03 1.20e-03 1.060 1.08e-04  1.28e-04
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A peek at some numerical results: Estimating E[y] under MAR

Compared with Celentano & Wainwright, 23: based on debiased Lasso + AMP
theory under Gaussian design

Our approach: a system of moment equations can be used to identify
1 = E[y] = 8" w in the following model:

y = B"x+ ¢, t|x ~ Bern(¢(a ' x))
based on estimating the following moments
E(t), E(ty), Ex" )2 'E(x), E(tx ") E(x),
E(tx )X E(xt), E(x )X E(xty), E(tx )X E(xty)



Oracle ASCW Empirical SCA
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a=(ay,...,ap) S Uniform([—+/3/p, /3/p]). Here

é(xTa) =0.1+0.9-expit(x" ).
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Conclusion and open ends

e \We proposed a moments-based approach for estimating low-dimensional
parameters of high-dimensional GLMs under the proportional asymptotic

regime and it works well compared to competing methods in the current
literature.

e Open ends:

o More general designs — semi-random, right orthogonally invariant, etc.
o Better numerical algorithms for inverting the nonlinear maps?

o Model misspecification
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