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Statistical Inference for High-Dimensional GLMs

• Observations: (yi ∈ Y ⊆ R, xi ∈ Rp)n
i=1

i.i.d.∼ P

• P parameterized as:

x ∼ PX,E(y|x) = ϕ(β⊤x), var(y|x) = σ2(x)

x has mean µ and covariance Σ
ϕ: monotonically increasing & three-times differentiable

• Asymptotic regime: p
n → δ ∈ (0,+∞) as n → ∞ (but allow p

n → 0)

Qn 1
How to conduct inference on the linear form v⊤β given any direction v and the
quadratic form ∥β∥2Σ = β⊤Σβ?

• linear form v⊤β contains βj = e⊤
j β when v = ej is the stadard basis

• quadratic form β⊤Σβ = var(β⊤x) informs us the Signal-to-Noise Ratio
(SNR) or the signal strength

• Σ is taken to be known until the very end, following the recent literature
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A General Theme in the Literature: Debiasing

• In high dimensions, many works builds on a biased initial estimator (e.g.,
MLE or Penalized MLE) β̂init, yielding β̂db = 1

ˆscale

(
β̂init − ˆbias

)
• There is a long list of works for logistic regression and other types of

GLMs when p/n → δ
Sur & Candés, PNAS 19; Zhao, Sur & Candés, Bernoulli 23; Massa et al.
22 and many others

• In the general form in Bellec 23 and (to our knowledge) first appeared for
Ridge Penalized MLE in Pragya Sur’s thesis

β̂db = β̂init +
1

n̂Σ
−1

n∑
i=1

xi∇ℓ(yi, x⊤
i β̂init)

where n̂ is a part of the solution to a system of fixed point equations,
derived by using the Approximate Message Passing machinery (Sur &
Candés, PNAS 19; Zhao, Sur & Candés, Bernoulli 23)
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Theoretical guarantees

Theorem 1 (Bellec 23)
Under regularity conditions, √n-consistency & CAN in aggregated sense:
ξj ∼ N(0, 1), j = 1, · · · , p

1

p

p∑
j=1

E
[(√

n(Σ−1)j,j
n̂
n (̂rβ̂db,j − t̂βj)− ξj

)2
]
→ 0

where r̂, t̂, n̂ are part of the solution to the AMP fixed-point equations

• Entry-wise CAN is still an open question for β̂db for general GLM and
p > n.

• Our estimator can achieve Entry-wise CAN!
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Roadmap: From Easy to Hard

Case I Gaussian, known µ = 0 & known Σ
x ∼ Np(0,Σ)

⇓
Case II Gaussian, unknown µ & known Σ

x ∼ Np(µ,Σ), µ unknown
⇓

Case III Gaussian, unknown µ & unknown Σ
x ∼ Np(µ,Σ), both µ and Σ unknown

⇓
Case IV Non-Gaussian, unknown µ & unknown Σ

x non-Gaussian, both µ and Σ unknown
⇓

Inference Bootstrap variance estimators
Bootstrap and Delta method
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GLM model with Gaussian Covariates

Assume Σ is known. Consider the GLM model with Gaussian covariates:

x ∼ Np(µ,Σ), E[y | x] = ϕ(β⊤x)
Let’s check

E[xy] = E[xE[y | x]] = E[xϕ(β⊤x)]

Stein’s Lemma to rescue!

E[xy] = E[xϕ(β⊤x)] = E[ϕ′(β⊤x)]Σβ + E[ϕ(β⊤x)]µ

Here,
β⊤x ∼ N (β⊤µ, ∥β∥2Σ)

.
Denote:

λβ := β⊤µ, γ2
β := ∥β∥2Σ, fi(λβ, γ

2
β) := E[ϕ(i)(β⊤x)]

Then:

E[xy] = f1(λβ, γ
2
β)Σβ + f0(λβ, γ

2
β)µ (1)
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Identification under Case I: Gaussian, known µ = 0 & known Σ

E[xy] = f1(λβ, γ
2
β)Σβ + f0(λβ, γ

2
β)µ

When µ = 0, the expression simplifies:

E[xy] = f1(0, γ2
β)Σβ

Identification Equations for µ = 0

mxy,2 := E[y1x⊤
1 Σ

−1x2y2] = f21(0, γ2
β) · γ2

β =: Ψ(γ2
β)

mβj := E[yx⊤]Σ−1ej = f1(0, γ2
β) · βj

(2)

Here, Ψ(γ2
β) is strictly monotonic if ϕ is strictly monotonic —so γ2

β can be
recovered via inversion.

Estimators for µ = 0

ˆmxy,2 := Un,2[y1x⊤
1 Σ

−1x2y2], m̂βj := Un,1[y1x⊤
1 Σ

−1ej]

γ̂2
β = Ψ−1( ˆmxy,2), β̂j =

m̂βj

f1(0, γ̂2
β)

(3)
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A back-of-the-envelope calculation

• Let’s take a closer look at the quadratic form ∥β∥2Σ

ˆ∥β∥2Σ := Un,2
[
y1x⊤

1 Σ
−1x2y2

]
• Since it is unbiased, we only need to compute its variance, by Hoeffding

decomposition,

var
(

ˆ∥β∥2Σ
)
≲ 1

n +
p
n2

p/n→δ

≲ 1

n

• In terms of CAN, one can use martingale CLT to show
√

n
(

ˆ∥β∥2Σ − ∥β∥2Σ
)
⇝ N

(
0, ν2

)
for some ν2 > 0 if β W2→ β and spec(Σ) W2→ S, where spec(Σ) is the
spectral distribution of Σ
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Identification under Case II: Gaussian, unknown µ & known Σ

Identification Equations for Unknown µ

m1 := my = f0(λβ, γ
2
β),

m2 := mxy,2 + m2
y · mx,2 − 2 · my · mxy,x = f21(λβ, γ

2
β) · γ2

β,

ΨGLM : (λβ, γ
2
β) → (m1,m2).

mνj := E[x]⊤Σ−1ej = µ⊤Σ−1ej = ν⊤ej = νj,

mβj := E[yx⊤]Σ−1ej = f0(λβ, γ
2
β) · νj + f1(λβ, γ

2
β) · βj.

(4)

Estimators for Unknown µ

m̂1 := m̂y := Un,1[y], m̂2 := m̂xy,2 + m̂2
y · m̂x,2 − 2 · m̂y · m̂xy,x,

m̂x,2 := Un,2[x⊤1 Σ−1x2], m̂xy,x := Un,2[y1x⊤1 Σ−1x2],
m̂xy,2 := Un,2[y1x⊤1 Σ−1x2y2], m̂νj := Un,1[x⊤]Σ−1ej,

m̂βj := Un,1[yx⊤]Σ−1ej.

(λ̂β, γ̂
2
β) := Ψ−1

GLM(m̂1, m̂2), β̂j :=
m̂βj − f0(λ̂β, γ̂β

2) · m̂νj

f1(λ̂β, γ̂β
2)

.

(5)
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y · mx,2 − 2 · my · mxy,x = f21(λβ, γ

2
β) · γ2

β,

ΨGLM : (λβ, γ
2
β) → (m1,m2).

mνj := E[x]⊤Σ−1ej = µ⊤Σ−1ej = ν⊤ej = νj,

mβj := E[yx⊤]Σ−1ej = f0(λβ, γ
2
β) · νj + f1(λβ, γ

2
β) · βj.

(4)

Estimators for Unknown µ

m̂1 := m̂y := Un,1[y], m̂2 := m̂xy,2 + m̂2
y · m̂x,2 − 2 · m̂y · m̂xy,x,

m̂x,2 := Un,2[x⊤1 Σ−1x2], m̂xy,x := Un,2[y1x⊤1 Σ−1x2],
m̂xy,2 := Un,2[y1x⊤1 Σ−1x2y2], m̂νj := Un,1[x⊤]Σ−1ej,

m̂βj := Un,1[yx⊤]Σ−1ej.

(λ̂β, γ̂
2
β) := Ψ−1

GLM(m̂1, m̂2), β̂j :=
m̂βj − f0(λ̂β, γ̂β

2) · m̂νj

f1(λ̂β, γ̂β
2)

.

(5)
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√
n-consistency and CAN

Theorem 2 (C., Liu, Mukherjee, 24)
Under some mild conditions, when x ∼ N(µ,Σ), the following is a√n-consistent and CAN estimator of

(
βj, λβ, γ

2
β

)
(λ̂β, γ̂2

β) := Ψ−1
GLM(m̂1, m̂2), β̂j :=

m̂βj − f0(λ̂β, γ̂β
2) · m̂νj

f1(λ̂β, γ̂β
2)

.

Proof sketch(Delta method).
√n-consistency & CAN follow from (1) the √n-consistency & CAN of
U-statistics; (2) ΨGLM is a diffeomorphism
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Identification under Case III: Gaussian, unknown µ & unknown Σ

• Identification Equations will be invariant.

• The knowledge of Σ influences the construction of moment estimators.

• One lazy method involves using a sample splitting strategy with weighted
sample covariance under I1 ∪ I2 = [n], |I1| = |I2| = n/2

Moment Estimators with Unknown Σ (Sample Splitting)

m̂xy,2 :=
1

n
2

( n
2
− 1
) ∑

i1 ̸=i2∈I1

yi1x⊤
i1 Σ̃

−1xi2yi2 ,

Σ̃ :=
1

n
2
− p − 1

∑
j∈I2

(xj − x̄I2)(xj − x̄I2)
⊤, x̄I2 :=

2

n
∑
j∈I2

xj.

(6)

• Adding condition n
2
> p + 3, our sample splitting estimators are√n-consistent.
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Identification under Case III: Gaussian, unknown µ & unknown Σ

• The sample splitting strategy will no longer useful when p > n
2
.

• An alternative method involve the Chebyshev polynomial approximate first
considered in Kong and Valiant 18

Moment Estimators Unknown Σ (Chebyshev) µ = 0

Σ−1 ≈
J∑

l=0

clΣ
l,

m̂xy,2 :=

J∑
l=0

clUn,l+2

[
y1x⊤

1

( l+2∏
s=3

xsx⊤
s

)
x2y2

]
.

(7)

• under same condition in Theorem 2, our estimators are consistent.
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Identification under Case IV: Non-Gaussian

• When x validate the Gaussian assumption, the Identification Equations
above will no longer hold.

• But under some assumption, Identification Equations can hold
approximately

Lemma 1 (C., Liu, Mukherjee, 24)
When Σ−1/2(X − µ) has zero mean and unit variance, the above Identification
Equations approximately with approximation error O

(
p−3/4

)
= O

(
n−3/4

)
as

n → ∞.

• Thus, above results of √n-consistency or consistency still hold.

• As for CAN property we need some assumption on limiting distribution on
β and µ: √pΣ1/2β

W8→ b and √pΣ−1/2µ
W8→ u where b ∼ ρ and u ∼ ϱ

respectively for some probability measures ρ and ϱ supported on R and
both ρ and ϱ have bounded first and second moments.
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Bootstrap variance estimators

• Confidence intervals can also be built by using the following bootstrap
procedure

• Taking the estimator m̂ := Un,2[y1x⊤
1 Σ

−1x2y2] of m := E[yx⊤]Σ−1E[xy]
as an example

• Drawing weights {w(b)
i }n

i=1 ∼ multinom(n; 1/n, · · · , 1/n) for b = 1, · · · ,B

• For b = 1, · · · ,B, compute
m̂(b) := Un,2[w(b)

1 y1x⊤
1 Σ

−1w(b)
2 x2y2],

m̂(b)
center := Un,2[(w(b)

1 − 1)y1x⊤
1 Σ

−1(w(b)
2 − 1)x2y2]

• Estimate the variance of m̂ by

V̂ :=
1

B

B∑
b=1

(
m̂(b) − 1

B

B∑
b′=1

m̂(b′)

)2

− 2

B

B∑
b=1

(
m̂(b)

center −
1

B

B∑
b′=1

m̂(b′)
center

)2



18/ 26

Bootstrap variance estimators

• Confidence intervals can also be built by using the following bootstrap
procedure

• Taking the estimator m̂ := Un,2[y1x⊤
1 Σ

−1x2y2] of m := E[yx⊤]Σ−1E[xy]
as an example

• Drawing weights {w(b)
i }n

i=1 ∼ multinom(n; 1/n, · · · , 1/n) for b = 1, · · · ,B

• For b = 1, · · · ,B, compute
m̂(b) := Un,2[w(b)

1 y1x⊤
1 Σ

−1w(b)
2 x2y2],

m̂(b)
center := Un,2[(w(b)

1 − 1)y1x⊤
1 Σ

−1(w(b)
2 − 1)x2y2]

• Estimate the variance of m̂ by

V̂ :=
1

B

B∑
b=1

(
m̂(b) − 1

B

B∑
b′=1

m̂(b′)

)2

− 2

B

B∑
b=1

(
m̂(b)

center −
1

B

B∑
b′=1

m̂(b′)
center

)2



18/ 26

Bootstrap variance estimators

• Confidence intervals can also be built by using the following bootstrap
procedure

• Taking the estimator m̂ := Un,2[y1x⊤
1 Σ

−1x2y2] of m := E[yx⊤]Σ−1E[xy]
as an example

• Drawing weights {w(b)
i }n

i=1 ∼ multinom(n; 1/n, · · · , 1/n) for b = 1, · · · ,B

• For b = 1, · · · ,B, compute
m̂(b) := Un,2[w(b)

1 y1x⊤
1 Σ

−1w(b)
2 x2y2],

m̂(b)
center := Un,2[(w(b)

1 − 1)y1x⊤
1 Σ

−1(w(b)
2 − 1)x2y2]

• Estimate the variance of m̂ by

V̂ :=
1

B

B∑
b=1

(
m̂(b) − 1

B

B∑
b′=1

m̂(b′)

)2

− 2

B

B∑
b=1

(
m̂(b)

center −
1

B

B∑
b′=1

m̂(b′)
center

)2



18/ 26

Bootstrap variance estimators

• Confidence intervals can also be built by using the following bootstrap
procedure

• Taking the estimator m̂ := Un,2[y1x⊤
1 Σ

−1x2y2] of m := E[yx⊤]Σ−1E[xy]
as an example

• Drawing weights {w(b)
i }n

i=1 ∼ multinom(n; 1/n, · · · , 1/n) for b = 1, · · · ,B

• For b = 1, · · · ,B, compute
m̂(b) := Un,2[w(b)

1 y1x⊤
1 Σ

−1w(b)
2 x2y2],

m̂(b)
center := Un,2[(w(b)

1 − 1)y1x⊤
1 Σ

−1(w(b)
2 − 1)x2y2]

• Estimate the variance of m̂ by

V̂ :=
1

B

B∑
b=1

(
m̂(b) − 1

B

B∑
b′=1

m̂(b′)

)2

− 2

B

B∑
b=1

(
m̂(b)

center −
1

B

B∑
b′=1

m̂(b′)
center

)2



18/ 26

Bootstrap variance estimators

• Confidence intervals can also be built by using the following bootstrap
procedure

• Taking the estimator m̂ := Un,2[y1x⊤
1 Σ

−1x2y2] of m := E[yx⊤]Σ−1E[xy]
as an example

• Drawing weights {w(b)
i }n

i=1 ∼ multinom(n; 1/n, · · · , 1/n) for b = 1, · · · ,B

• For b = 1, · · · ,B, compute
m̂(b) := Un,2[w(b)

1 y1x⊤
1 Σ

−1w(b)
2 x2y2],

m̂(b)
center := Un,2[(w(b)

1 − 1)y1x⊤
1 Σ

−1(w(b)
2 − 1)x2y2]

• Estimate the variance of m̂ by

V̂ :=
1

B

B∑
b=1

(
m̂(b) − 1

B

B∑
b′=1

m̂(b′)

)2

− 2

B

B∑
b=1

(
m̂(b)

center −
1

B

B∑
b′=1

m̂(b′)
center

)2



19/ 26

Outline

Motivations: Estimating Functionals of High-Dimensional GLMs

Our proposal – Moments-based estimators

Numerical experiments

Conclusion and open ends
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A peek at some numerical results: GLMs
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Figure: αj’s in logistic regression: known Σ Gaussian design and
α = (α1, · · · , αp)

i.i.d.∼ Uniform([−
√

3/p,
√

3/p])
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A peek at some numerical results: GLMs
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Figure: Comparision with Bellec 23: known Σ Gaussian design and
α = (α1, · · · , αp)

i.i.d.∼ Uniform([−
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3/p,
√

3/p])
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Boostrap variance estimator: GLM

Table: Bootstrap Variance Estimators vs. Monte Carlo Variances under (Gaussian
design and dense regression coefficients), Based on 500 Monte Carlo Simulations with
n = 5000, p/n = 1.2. Here µ is unknown but Σ is known.

MC Var Mean Est. Var Mean Est. Var
MC Var Std Est. Var MSE

EA 4.81e-05 5.01e-05 1.041 2.24e-06 3.00e-06
E[AX⊤]Σ−1µ 4.38e-04 4.77e-04 1.091 7.04e-05 8.08e-05
E[AX⊤]Σ−1E[AX] 1.85e-04 1.87e-04 1.009 2.83e-05 2.84e-05
E[AX⊤]Σ−1E[AX] 1.41e-04 1.36e-04 0.965 2.03e-05 2.09e-05
α⊤µ 2.96e-03 3.01e-03 1.017 1.62e-03 1.62e-03
α⊤Σα 6.42e-02 6.76e-02 1.053 3.69e-02 3.71e-02
α1 1.15e-03 1.20e-03 1.043 1.02e-04 1.13e-04
α100 1.13e-03 1.20e-03 1.060 1.08e-04 1.28e-04
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A peek at some numerical results: Estimating E[y] under MAR

Compared with Celentano & Wainwright, 23: based on debiased Lasso + AMP
theory under Gaussian design

Our approach: a system of moment equations can be used to identify
ψ = E[y] = β⊤µ in the following model:

y = β⊤x + ε, t|x ∼ Bern(ϕ(α⊤x))

based on estimating the following moments

E(t),E(ty),E(x⊤)Σ−1E(x),E(tx⊤)Σ−1E(x),
E(tx⊤)Σ−1E(xt),E(x⊤)Σ−1E(xty),E(tx⊤)Σ−1E(xty)
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based on estimating the following moments

E(t),E(ty),E(x⊤)Σ−1E(x),E(tx⊤)Σ−1E(x),
E(tx⊤)Σ−1E(xt),E(x⊤)Σ−1E(xty),E(tx⊤)Σ−1E(xty)
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Figure: αj’s in logistic regression: known Σ, Gaussian design and
α = (α1, . . . , αp)

i.i.d.∼ Uniform([−
√

3/p,
√

3/p]). Here
ϕ(x⊤α) = 0.1 + 0.9 · expit(x⊤α).
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Outline
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Conclusion and open ends

• We proposed a moments-based approach for estimating low-dimensional
parameters of high-dimensional GLMs under the proportional asymptotic
regime and it works well compared to competing methods in the current
literature.

• Open ends:

◦ More general designs – semi-random, right orthogonally invariant, etc.

◦ Better numerical algorithms for inverting the nonlinear maps?

◦ Model misspecification

◦ · · ·
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