Method-of-Moments Inference for GLMs and Doubly Robust Functionals under Proportional Asymptotics

陈星宇

上海交通大学

Draft: https://arxiv.org/pdf/2408.06103

Slides: https://cxy0714.github.io/

April 19, 2025

Coauthors

刘林

上海交通大学

Rajarshi Mukherjee

Harvard T.H. Chan School of Public Health

benefited from discussion with Subhabrata Sen (Harvard Stats) and Pragya Sur (Harvard Stats)

Outline

Motivations: Estimating Functionals of High-Dimensional GLMs

Our proposal – Moments-based estimators

Numerical experiments

Conclusion and open ends

Outline

Motivations: Estimating Functionals of High-Dimensional GLMs

Our proposal – Moments-based estimators

Numerical experiments

Conclusion and open ends

- Observations: $(y_i \in \mathcal{Y} \subseteq \mathbb{R}, \mathbf{x}_i \in \mathbb{R}^p)_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}$
- P parameterized as:

 $\mathbf{x} \sim \mathbb{P}_{\mathbf{X}}, \mathsf{E}(\mathbf{y}|\mathbf{x}) = \phi(\boldsymbol{\beta}^{\top}\mathbf{x}), \mathsf{var}(\mathbf{y}|\mathbf{x}) = \sigma^{2}(\mathbf{x})$

 ${f x}$ has mean ${m \mu}$ and covariance ${m \Sigma}$ ϕ : monotonically increasing & three-times differentiable

• Asymptotic regime:
$$\frac{p}{n} \to \delta \in (0, +\infty)$$
 as $n \to \infty$ (but allow $\frac{p}{n} \to 0$)

Qn (Qn

- linear form $\mathbf{v}^{\top} \boldsymbol{\beta}$ contains $\boldsymbol{\beta}_j = \boldsymbol{e}_j^{\top} \boldsymbol{\beta}$ when $\mathbf{v} = \boldsymbol{e}_j$ is the stadard basis
- quadratic form β^TΣβ = var(β^Tx) informs us the Signal-to-Noise Ratio (SNR) or the signal strength
- Σ is taken to be known until the very end, following the recent literature

- Observations: $(y_i \in \mathcal{Y} \subseteq \mathbb{R}, \mathbf{x}_i \in \mathbb{R}^p)_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}$
- $\mathbb P$ parameterized as:

$$\mathbf{x} \sim \mathbb{P}_{\mathbf{X}}, \mathsf{E}(\mathbf{y}|\mathbf{x}) = \phi(\boldsymbol{\beta}^{\top}\mathbf{x}), \mathsf{var}(\mathbf{y}|\mathbf{x}) = \sigma^{2}(\mathbf{x})$$

x has mean μ and covariance Σ ϕ : monotonically increasing & three-times differentiable

• Asymptotic regime:
$$\frac{p}{n} \to \delta \in (0, +\infty)$$
 as $n \to \infty$ (but allow $\frac{p}{n} \to 0$)

Qn

- linear form $\mathbf{v}^{\top}\boldsymbol{\beta}$ contains $\boldsymbol{\beta}_j = \boldsymbol{e}_j^{\top}\boldsymbol{\beta}$ when $\mathbf{v} = \boldsymbol{e}_j$ is the stadard basis
- quadratic form β^TΣβ = var(β^Tx) informs us the Signal-to-Noise Ratio (SNR) or the signal strength
- Σ is taken to be known until the very end, following the recent literature

- Observations: $(y_i \in \mathcal{Y} \subseteq \mathbb{R}, \mathbf{x}_i \in \mathbb{R}^p)_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}$
- $\bullet \ \mathbb{P}$ parameterized as:

$$\mathbf{x} \sim \mathbb{P}_{\mathbf{X}}, \mathsf{E}(\mathbf{y}|\mathbf{x}) = \phi(\boldsymbol{\beta}^{\top}\mathbf{x}), \mathsf{var}(\mathbf{y}|\mathbf{x}) = \sigma^{2}(\mathbf{x})$$

x has mean μ and covariance Σ ϕ : monotonically increasing & three-times differentiable

• Asymptotic regime: $\frac{p}{n} \to \delta \in (0, +\infty)$ as $n \to \infty$ (but allow $\frac{p}{n} \to 0$)

Qn 1

- linear form $\mathbf{v}^{\top} \boldsymbol{\beta}$ contains $\boldsymbol{\beta}_j = \boldsymbol{e}_j^{\top} \boldsymbol{\beta}$ when $\mathbf{v} = \boldsymbol{e}_j$ is the stadard basis
- quadratic form β^TΣβ = var(β^Tx) informs us the Signal-to-Noise Ratio (SNR) or the signal strength
- Σ is taken to be known until the very end, following the recent literature

- Observations: $(y_i \in \mathcal{Y} \subseteq \mathbb{R}, \mathbf{x}_i \in \mathbb{R}^p)_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}$
- $\bullet \ \mathbb{P}$ parameterized as:

$$\mathbf{x} \sim \mathbb{P}_{\mathbf{X}}, \mathsf{E}(\mathbf{y}|\mathbf{x}) = \phi(\boldsymbol{\beta}^{\top}\mathbf{x}), \mathsf{var}(\mathbf{y}|\mathbf{x}) = \sigma^{2}(\mathbf{x})$$

x has mean μ and covariance Σ ϕ : monotonically increasing & three-times differentiable

• Asymptotic regime: $\frac{p}{n} \to \delta \in (0, +\infty)$ as $n \to \infty$ (but allow $\frac{p}{n} \to 0$)

Qn 1

- linear form $\mathbf{v}^{\top}\boldsymbol{\beta}$ contains $\boldsymbol{\beta}_j = \boldsymbol{e}_j^{\top}\boldsymbol{\beta}$ when $\mathbf{v} = \boldsymbol{e}_j$ is the stadard basis
- quadratic form β^TΣβ = var(β^Tx) informs us the Signal-to-Noise Ratio (SNR) or the signal strength
- Σ is taken to be known until the very end, following the recent literature

- Observations: $(y_i \in \mathcal{Y} \subseteq \mathbb{R}, \mathbf{x}_i \in \mathbb{R}^p)_{i=1}^n \overset{\text{i.i.d.}}{\sim} \mathbb{P}$
- $\bullet \ \mathbb{P}$ parameterized as:

$$\mathbf{x} \sim \mathbb{P}_{\mathbf{X}}, \mathsf{E}(\mathbf{y}|\mathbf{x}) = \phi(\boldsymbol{\beta}^{\top}\mathbf{x}), \mathsf{var}(\mathbf{y}|\mathbf{x}) = \sigma^{2}(\mathbf{x})$$

x has mean μ and covariance Σ ϕ : monotonically increasing & three-times differentiable

• Asymptotic regime: $\frac{p}{n} \to \delta \in (0, +\infty)$ as $n \to \infty$ (but allow $\frac{p}{n} \to 0$)

Qn 1

- linear form $\mathbf{v}^\top \boldsymbol{\beta}$ contains $\boldsymbol{\beta}_j = \boldsymbol{e}_j^\top \boldsymbol{\beta}$ when $\mathbf{v} = \boldsymbol{e}_j$ is the stadard basis
- quadratic form β^TΣβ = var(β^Tx) informs us the Signal-to-Noise Ratio (SNR) or the signal strength
- Σ is taken to be known until the very end, following the recent literature

- Observations: $(y_i \in \mathcal{Y} \subseteq \mathbb{R}, \mathbf{x}_i \in \mathbb{R}^p)_{i=1}^n \overset{i.i.d.}{\sim} \mathbb{P}$
- $\bullet \ \mathbb{P}$ parameterized as:

$$\mathbf{x} \sim \mathbb{P}_{\mathbf{X}}, \mathsf{E}(\mathbf{y}|\mathbf{x}) = \phi(\boldsymbol{\beta}^{\top}\mathbf{x}), \mathsf{var}(\mathbf{y}|\mathbf{x}) = \sigma^{2}(\mathbf{x})$$

x has mean μ and covariance Σ ϕ : monotonically increasing & three-times differentiable

• Asymptotic regime: $\frac{p}{n} \to \delta \in (0, +\infty)$ as $n \to \infty$ (but allow $\frac{p}{n} \to 0$)

Qn 1

- linear form $\mathbf{v}^\top \boldsymbol{\beta}$ contains $\boldsymbol{\beta}_j = \boldsymbol{e}_j^\top \boldsymbol{\beta}$ when $\mathbf{v} = \boldsymbol{e}_j$ is the stadard basis
- quadratic form $\beta^{\top} \Sigma \beta = var(\beta^{\top} x)$ informs us the Signal-to-Noise Ratio (SNR) or the signal strength
- Σ is taken to be known until the very end, following the recent literature

- In high dimensions, many works builds on a biased initial estimator (e.g., MLE or Penalized MLE) $\hat{\beta}_{init}$, yielding $\hat{\beta}_{db} = \frac{1}{srale} \left(\hat{\beta}_{init} \hat{bias} \right)$
- There is a long list of works for logistic regression and other types of GLMs when $p/n \rightarrow \delta$ Sur & Candés, PNAS 19; Zhao, Sur & Candés, Bernoulli 23; Massa et al. 22 and many others
- In the general form in Bellec 23 and (to our knowledge) first appeared for Ridge Penalized MLE in Pragya Sur's thesis

$$\hat{oldsymbol{eta}}_{\mathsf{db}} = \hat{oldsymbol{eta}}_{\mathsf{init}} + rac{1}{\hat{n}} \Sigma^{-1} \sum_{i=1}^{n} \mathbf{x}_i
abla \ell(\mathbf{y}_i, \mathbf{x}_i^\top \hat{oldsymbol{eta}}_{\mathsf{init}})$$

where \hat{n} is a part of the solution to a system of fixed point equations, derived by using the Approximate Message Passing machinery (Sur & Candés, PNAS 19; Zhao, Sur & Candés, Bernoulli 23)

- In high dimensions, many works builds on a biased initial estimator (e.g., MLE or Penalized MLE) $\hat{\beta}_{init}$, yielding $\hat{\beta}_{db} = \frac{1}{scale} \left(\hat{\beta}_{init} \hat{bias} \right)$
- There is a long list of works for logistic regression and other types of GLMs when $p/n \rightarrow \delta$ Sur & Candés, PNAS 19; Zhao, Sur & Candés, Bernoulli 23; Massa et al. 22 and many others
- In the general form in Bellec 23 and (to our knowledge) first appeared for Ridge Penalized MLE in Pragya Sur's thesis

$$\hat{\boldsymbol{eta}}_{\mathsf{db}} = \hat{\boldsymbol{eta}}_{\mathrm{init}} + rac{1}{\hat{n}} \Sigma^{-1} \sum_{i=1}^{n} \mathbf{x}_{i} \nabla \ell(\mathbf{y}_{i}, \mathbf{x}_{i}^{\top} \hat{\boldsymbol{eta}}_{\mathrm{init}})$$

where *n* is a part of the solution to a system of fixed point equations, derived by using the Approximate Message Passing machinery (Sur & Candés, PNAS 19; Zhao, Sur & Candés, Bernoulli 23)

- In high dimensions, many works builds on a biased initial estimator (e.g., MLE or Penalized MLE) $\hat{\beta}_{init}$, yielding $\hat{\beta}_{db} = \frac{1}{scale} \left(\hat{\beta}_{init} \hat{bias} \right)$
- There is a long list of works for logistic regression and other types of GLMs when $p/n \rightarrow \delta$ Sur & Candés, PNAS 19; Zhao, Sur & Candés, Bernoulli 23; Massa et al. 22 and many others
- In the general form in Bellec 23 and (to our knowledge) first appeared for Ridge Penalized MLE in Pragya Sur's thesis

$$\hat{\boldsymbol{eta}}_{\mathsf{db}} = \hat{\boldsymbol{eta}}_{\mathrm{init}} + rac{1}{\hat{n}} \Sigma^{-1} \sum_{i=1}^{n} \mathbf{x}_{i} \nabla \ell(\mathbf{y}_{i}, \mathbf{x}_{i}^{\top} \hat{\boldsymbol{eta}}_{\mathrm{init}})$$

where *n* is a part of the solution to a system of fixed point equations, derived by using the Approximate Message Passing machinery (Sur & Candés, PNAS 19; Zhao, Sur & Candés, Bernoulli 23)

- In high dimensions, many works builds on a biased initial estimator (e.g., MLE or Penalized MLE) $\hat{\beta}_{init}$, yielding $\hat{\beta}_{db} = \frac{1}{scale} \left(\hat{\beta}_{init} \hat{bias} \right)$
- There is a long list of works for logistic regression and other types of GLMs when $p/n \rightarrow \delta$ Sur & Candés, PNAS 19; Zhao, Sur & Candés, Bernoulli 23; Massa et al. 22 and many others
- In the general form in Bellec 23 and (to our knowledge) first appeared for Ridge Penalized MLE in Pragya Sur's thesis

$$\hat{\boldsymbol{\beta}}_{\mathsf{db}} = \hat{\boldsymbol{\beta}}_{\mathrm{init}} + \frac{1}{\hat{n}} \boldsymbol{\Sigma}^{-1} \sum_{i=1}^{n} \mathbf{x}_{i} \nabla \ell(\mathbf{y}_{i}, \mathbf{x}_{i}^{\top} \hat{\boldsymbol{\beta}}_{\mathrm{init}})$$

where \hat{n} is a part of the solution to a system of fixed point equations, derived by using the Approximate Message Passing machinery (Sur & Candés, PNAS 19; Zhao, Sur & Candés, Bernoulli 23)

Theoretical guarantees

Theorem 1 (Bellec 23)

Under regularity conditions, $\sqrt{n}\text{-consistency}$ & CAN in aggregated sense: $\xi_j \sim N(0,1), \, j=1,\cdots,p$

$$\frac{1}{p}\sum_{j=1}^{p} \mathsf{E}\left[\left(\sqrt{n}(\Sigma^{-1})_{j,j}\frac{\hat{n}}{n}(\hat{r}\hat{\beta}_{\mathsf{db},j}-\hat{t}\beta_{j})-\xi_{j}\right)^{2}\right] \to 0$$

where $\hat{r}, \hat{t}, \hat{n}$ are part of the solution to the AMP fixed-point equations

- Entry-wise CAN is still an open question for $\hat{\beta}_{\rm db}$ for general GLM and p>n.
- Our estimator can achieve Entry-wise CAN!

Outline

Motivations: Estimating Functionals of High-Dimensional GLMs

Our proposal – Moments-based estimators

Numerical experiments

Conclusion and open ends

Roadmap: From Easy to Hard

```
Case I Gaussian, known \mu = 0 & known \Sigma
               \mathbf{x} \sim \mathcal{N}_{\rho}(\mathbf{0}, \mathbf{\Sigma})
           ∜
 Case II Gaussian, unknown \mu & known \Sigma
               \mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \ \boldsymbol{\mu} unknown
           1
Case III Gaussian, unknown \mu & unknown \Sigma
               \mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), both \boldsymbol{\mu} and \boldsymbol{\Sigma} unknown
          1
Case IV Non-Gaussian, unknown \mu & unknown \Sigma
               x non-Gaussian, both \mu and \Sigma unknown
           ∜
```

Inference Bootstrap variance estimators Bootstrap and Delta method

Assume Σ is known. Consider the GLM model with Gaussian covariates:

 $\mathbf{x} \sim \mathcal{N}_{\rho}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \mathbb{E}[\mathbf{y} \mid \mathbf{x}] = \phi(\boldsymbol{\beta}^{\top} \mathbf{x})$

Let's check

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = \mathbb{E}[\mathbf{x}\mathbb{E}[\mathbf{y} \mid \mathbf{x}]] = \mathbb{E}[\mathbf{x}\phi(\boldsymbol{\beta}^{\top}\mathbf{x})]$$

Stein's Lemma to rescue!

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = \mathbb{E}[\mathbf{x}\,\phi(\boldsymbol{\beta}^{\top}\mathbf{x})] = \mathbb{E}[\phi'(\boldsymbol{\beta}^{\top}\mathbf{x})]\boldsymbol{\Sigma}\,\boldsymbol{\beta} + \mathbb{E}[\phi(\boldsymbol{\beta}^{\top}\mathbf{x})]\boldsymbol{\mu}$$

Here,

$$\boldsymbol{\beta}^{\top}\mathbf{x} \sim \mathcal{N}(\boldsymbol{\beta}^{\top}\boldsymbol{\mu}, \|\boldsymbol{\beta}\|_{\boldsymbol{\Sigma}}^2)$$

Denote:

$$\lambda_{\boldsymbol{eta}} \coloneqq \boldsymbol{eta}^{ op} \boldsymbol{\mu}, \quad \gamma_{\boldsymbol{eta}}^2 \coloneqq \|\boldsymbol{eta}\|_{\boldsymbol{\Sigma}}^2, \quad \mathrm{f}_i(\lambda_{\boldsymbol{eta}}, \gamma_{\boldsymbol{eta}}^2) \coloneqq \mathbb{E}[\phi^{(i)}(\boldsymbol{eta}^{ op}\mathbf{x})]$$

Then:

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = f_1(\lambda_\beta, \gamma_\beta^2) \boldsymbol{\Sigma} \boldsymbol{\beta} + f_0(\lambda_\beta, \gamma_\beta^2) \boldsymbol{\mu}$$
(1)

Assume Σ is known. Consider the GLM model with Gaussian covariates:

$$\mathbf{x} \sim \mathcal{N}_{
ho}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \mathbb{E}[\mathbf{y} \mid \mathbf{x}] = \phi(\boldsymbol{\beta}^{\top} \mathbf{x})$$

Let's check

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = \mathbb{E}[\mathbf{x}\mathbb{E}[\mathbf{y} \mid \mathbf{x}]] = \mathbb{E}[\mathbf{x}\phi(\boldsymbol{\beta}^{\top}\mathbf{x})]$$

Stein's Lemma to rescue!

$$\mathbb{E}[\mathrm{x}\mathrm{y}] = \mathbb{E}[\mathrm{x}\,\phi(\boldsymbol{\beta}^{\top}\mathrm{x})] = \mathbb{E}[\phi'(\boldsymbol{\beta}^{\top}\mathrm{x})]\boldsymbol{\Sigma}\,\boldsymbol{\beta} + \mathbb{E}[\phi(\boldsymbol{\beta}^{\top}\mathrm{x})]\boldsymbol{\mu}$$

Here,

$$\boldsymbol{\beta}^{\top}\mathbf{x} \sim \mathcal{N}(\boldsymbol{\beta}^{\top}\boldsymbol{\mu}, \|\boldsymbol{\beta}\|_{\boldsymbol{\Sigma}}^2)$$

Denote:

$$\lambda_{\boldsymbol{eta}} \coloneqq \boldsymbol{eta}^{ op} \boldsymbol{\mu}, \quad \gamma_{\boldsymbol{eta}}^2 \coloneqq \|\boldsymbol{eta}\|_{\boldsymbol{\Sigma}}^2, \quad \mathrm{f}_i(\lambda_{\boldsymbol{eta}}, \gamma_{\boldsymbol{eta}}^2) \coloneqq \mathbb{E}[\phi^{(i)}(\boldsymbol{eta}^{ op}\mathbf{x})]$$

Then:

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = f_1(\lambda_\beta, \gamma_\beta^2) \boldsymbol{\Sigma} \boldsymbol{\beta} + f_0(\lambda_\beta, \gamma_\beta^2) \boldsymbol{\mu}$$
(1)

Assume Σ is known. Consider the GLM model with Gaussian covariates:

$$\mathbf{x} \sim \mathcal{N}_{
ho}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \mathbb{E}[\mathbf{y} \mid \mathbf{x}] = \phi(\boldsymbol{\beta}^{\top} \mathbf{x})$$

Let's check

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = \mathbb{E}[\mathbf{x}\mathbb{E}[\mathbf{y} \mid \mathbf{x}]] = \mathbb{E}[\mathbf{x}\phi(\boldsymbol{\beta}^{\top}\mathbf{x})]$$

Stein's Lemma to rescue!

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = \mathbb{E}[\mathbf{x}\,\phi(\boldsymbol{\beta}^{\top}\mathbf{x})] = \mathbb{E}[\phi'(\boldsymbol{\beta}^{\top}\mathbf{x})]\boldsymbol{\Sigma}\,\boldsymbol{\beta} + \mathbb{E}[\phi(\boldsymbol{\beta}^{\top}\mathbf{x})]\boldsymbol{\mu}$$

Here,

 $oldsymbol{eta}^{ op}\mathbf{x}\sim\mathcal{N}(oldsymbol{eta}^{ op}oldsymbol{\mu},\|oldsymbol{eta}\|_{oldsymbol{\Sigma}}^2)$

Denote:

$$\lambda_{\boldsymbol{eta}} \coloneqq \boldsymbol{eta}^{ op} \boldsymbol{\mu}, \quad \gamma_{\boldsymbol{eta}}^2 \coloneqq \|\boldsymbol{eta}\|_{\boldsymbol{\Sigma}}^2, \quad \mathrm{f}_i(\lambda_{\boldsymbol{eta}}, \gamma_{\boldsymbol{eta}}^2) \coloneqq \mathbb{E}[\phi^{(i)}(\boldsymbol{eta}^{ op}\mathbf{x})]$$

Then:

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = f_1(\lambda_\beta, \gamma_\beta^2) \boldsymbol{\Sigma} \boldsymbol{\beta} + f_0(\lambda_\beta, \gamma_\beta^2) \boldsymbol{\mu}$$
(1)

Assume Σ is known. Consider the GLM model with Gaussian covariates:

$$\mathbf{x} \sim \mathcal{N}_{
ho}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \mathbb{E}[\mathbf{y} \mid \mathbf{x}] = \phi(\boldsymbol{\beta}^{\top} \mathbf{x})$$

Let's check

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = \mathbb{E}[\mathbf{x}\mathbb{E}[\mathbf{y} \mid \mathbf{x}]] = \mathbb{E}[\mathbf{x}\phi(\boldsymbol{\beta}^{\top}\mathbf{x})]$$

Stein's Lemma to rescue!

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = \mathbb{E}[\mathbf{x}\,\phi(\boldsymbol{\beta}^{\top}\mathbf{x})] = \mathbb{E}[\phi'(\boldsymbol{\beta}^{\top}\mathbf{x})]\boldsymbol{\Sigma}\,\boldsymbol{\beta} + \mathbb{E}[\phi(\boldsymbol{\beta}^{\top}\mathbf{x})]\boldsymbol{\mu}$$

Here,

.

$$\boldsymbol{\beta}^{\top} \mathbf{x} \sim \mathcal{N}(\boldsymbol{\beta}^{\top} \boldsymbol{\mu}, \|\boldsymbol{\beta}\|_{\boldsymbol{\Sigma}}^2)$$

Denote:

$$\lambda_{\boldsymbol{eta}} \coloneqq \boldsymbol{eta}^{ op} \boldsymbol{\mu}, \quad \gamma_{\boldsymbol{eta}}^2 \coloneqq \|\boldsymbol{eta}\|_{\boldsymbol{\Sigma}}^2, \quad \mathrm{f}_i(\lambda_{\boldsymbol{eta}}, \gamma_{\boldsymbol{eta}}^2) \coloneqq \mathbb{E}[\phi^{(i)}(\boldsymbol{eta}^{ op}\mathbf{x})]$$

Then:

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = f_1(\lambda_\beta, \gamma_\beta^2) \boldsymbol{\Sigma} \boldsymbol{\beta} + f_0(\lambda_\beta, \gamma_\beta^2) \boldsymbol{\mu}$$
(1)

Assume Σ is known. Consider the GLM model with Gaussian covariates:

$$\mathbf{x} \sim \mathcal{N}_{
ho}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \mathbb{E}[\mathbf{y} \mid \mathbf{x}] = \phi(\boldsymbol{\beta}^{\top} \mathbf{x})$$

Let's check

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = \mathbb{E}[\mathbf{x}\mathbb{E}[\mathbf{y} \mid \mathbf{x}]] = \mathbb{E}[\mathbf{x}\phi(\boldsymbol{\beta}^{\top}\mathbf{x})]$$

Stein's Lemma to rescue!

$$\mathbb{E}[\mathrm{xy}] = \mathbb{E}[\mathrm{x}\,\phi(oldsymbol{eta}^{ op}\mathrm{x})] = \mathbb{E}[\phi'(oldsymbol{eta}^{ op}\mathrm{x})] oldsymbol{\Sigma}\,oldsymbol{eta} + \mathbb{E}[\phi(oldsymbol{eta}^{ op}\mathrm{x})]oldsymbol{\mu}$$

Here,

$$\boldsymbol{\beta}^{\top} \mathbf{x} \sim \mathcal{N}(\boldsymbol{\beta}^{\top} \boldsymbol{\mu}, \|\boldsymbol{\beta}\|_{\boldsymbol{\Sigma}}^{2})$$

Denote:

$$\lambda_{\boldsymbol{\beta}} \coloneqq \boldsymbol{\beta}^{\top} \boldsymbol{\mu}, \quad \boldsymbol{\gamma}_{\boldsymbol{\beta}}^2 \coloneqq \|\boldsymbol{\beta}\|_{\boldsymbol{\Sigma}}^2, \quad \mathrm{f}_i(\lambda_{\boldsymbol{\beta}}, \boldsymbol{\gamma}_{\boldsymbol{\beta}}^2) \coloneqq \mathbb{E}[\phi^{(i)}(\boldsymbol{\beta}^{\top} \mathbf{x})]$$

Then:

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = f_1(\lambda_\beta, \gamma_\beta^2) \boldsymbol{\Sigma} \boldsymbol{\beta} + f_0(\lambda_\beta, \gamma_\beta^2) \boldsymbol{\mu}$$
(1)

Assume Σ is known. Consider the GLM model with Gaussian covariates:

$$\mathbf{x} \sim \mathcal{N}_{
ho}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \mathbb{E}[\mathbf{y} \mid \mathbf{x}] = \phi(\boldsymbol{\beta}^{\top} \mathbf{x})$$

Let's check

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = \mathbb{E}[\mathbf{x}\mathbb{E}[\mathbf{y} \mid \mathbf{x}]] = \mathbb{E}[\mathbf{x}\phi(\boldsymbol{\beta}^{\top}\mathbf{x})]$$

Stein's Lemma to rescue!

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = \mathbb{E}[\mathbf{x}\phi(\boldsymbol{\beta}^{\top}\mathbf{x})] = \mathbb{E}[\phi'(\boldsymbol{\beta}^{\top}\mathbf{x})]\boldsymbol{\Sigma}\boldsymbol{\beta} + \mathbb{E}[\phi(\boldsymbol{\beta}^{\top}\mathbf{x})]\boldsymbol{\mu}$$

Here,

$$\boldsymbol{\beta}^{\top}\mathbf{x} \sim \mathcal{N}(\boldsymbol{\beta}^{\top}\boldsymbol{\mu}, \|\boldsymbol{\beta}\|_{\boldsymbol{\Sigma}}^{2})$$

Denote:

$$\lambda_{\boldsymbol{\beta}} \coloneqq \boldsymbol{\beta}^{\top} \boldsymbol{\mu}, \quad \boldsymbol{\gamma}_{\boldsymbol{\beta}}^2 \coloneqq \|\boldsymbol{\beta}\|_{\boldsymbol{\Sigma}}^2, \quad \mathrm{f}_i(\lambda_{\boldsymbol{\beta}}, \boldsymbol{\gamma}_{\boldsymbol{\beta}}^2) \coloneqq \mathbb{E}[\phi^{(i)}(\boldsymbol{\beta}^{\top} \mathbf{x})]$$

Then:

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = f_1(\lambda_\beta, \gamma_\beta^2) \boldsymbol{\Sigma} \,\boldsymbol{\beta} + f_0(\lambda_\beta, \gamma_\beta^2) \boldsymbol{\mu} \tag{1}$$

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = f_1(\lambda_{\boldsymbol{\beta}}, \gamma_{\boldsymbol{\beta}}^2)\boldsymbol{\Sigma}\,\boldsymbol{\beta} + f_0(\lambda_{\boldsymbol{\beta}}, \gamma_{\boldsymbol{\beta}}^2)\boldsymbol{\mu}$$

When $\mu = 0$, the expression simplifies:

 $\mathbb{E}[\mathbf{x}\mathbf{y}] = \mathbf{f}_1(0, \gamma_{\boldsymbol{\beta}}^2) \boldsymbol{\Sigma} \boldsymbol{\beta}$

Identification Equations for $oldsymbol{\mu}=oldsymbol{0}$

$$\begin{split} \mathbf{m}_{\mathbf{x}\mathbf{y},2} &\coloneqq \mathbb{E}[\mathbf{y}_1\mathbf{x}_1^\top \boldsymbol{\Sigma}^{-1}\mathbf{x}_2\mathbf{y}_2] = \mathbf{f}_1^2(0,\gamma_{\boldsymbol{\beta}}^2) \cdot \gamma_{\boldsymbol{\beta}}^2 \eqqcolon \Psi(\gamma_{\boldsymbol{\beta}}^2) \\ \mathbf{m}_{\boldsymbol{\beta}_j} &\coloneqq \mathbb{E}[\mathbf{y}\mathbf{x}^\top] \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_j = \mathbf{f}_1(0,\gamma_{\boldsymbol{\beta}}^2) \cdot \boldsymbol{\beta}_j \end{split}$$

Here, $\Psi(\gamma^2_\beta)$ is strictly monotonic if ϕ is strictly monotonic —so γ^2_β can be recovered via inversion.

Estimators for $\boldsymbol{\mu} = \mathbf{0}$ $\hat{\mathbf{m}}_{\mathbf{xy},2} \coloneqq \mathbb{U}_{a,2}[\mathbf{y}_1 \mathbf{x}_1^\top \boldsymbol{\Sigma}^{-1} \mathbf{x}_2 \mathbf{y}_2], \quad \hat{\mathbf{m}}_{\beta_j} \coloneqq \mathbb{U}_{a,1}[\mathbf{y}_1 \mathbf{x}_1^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_j]$ $\hat{\gamma}_{\boldsymbol{\beta}}^2 = \Psi^{-1}(\hat{\mathbf{m}}_{\mathbf{xy},2}), \quad \hat{\beta}_j = \frac{\hat{\mathbf{m}}_{\beta_j}}{f_1(0, \hat{\gamma}_{\boldsymbol{\beta}}^2)}$ (3)

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = f_1(\lambda_{\boldsymbol{\beta}}, \gamma_{\boldsymbol{\beta}}^2)\boldsymbol{\Sigma}\,\boldsymbol{\beta} + f_0(\lambda_{\boldsymbol{\beta}}, \gamma_{\boldsymbol{\beta}}^2)\boldsymbol{\mu}$$

When $\mu = 0$, the expression simplifies:

 $\mathbb{E}[\mathbf{x}\mathbf{y}] = \mathbf{f}_1(0, \boldsymbol{\gamma}_{\boldsymbol{\beta}}^2) \boldsymbol{\Sigma} \boldsymbol{\beta}$

Identification Equations for $\mu=0$

$$\begin{split} \mathbf{m}_{\mathbf{x}\mathbf{y},2} &\coloneqq \mathbb{E}[\mathbf{y}_1 \mathbf{x}_1^\top \boldsymbol{\Sigma}^{-1} \mathbf{x}_2 \mathbf{y}_2] = \mathbf{f}_1^2(0, \gamma_{\boldsymbol{\beta}}^2) \cdot \gamma_{\boldsymbol{\beta}}^2 \eqqcolon \Psi(\gamma_{\boldsymbol{\beta}}^2) \\ \mathbf{m}_{\boldsymbol{\beta}_j} &\coloneqq \mathbb{E}[\mathbf{y} \mathbf{x}^\top] \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_j = \mathbf{f}_1(0, \gamma_{\boldsymbol{\beta}}^2) \cdot \boldsymbol{\beta}_j \end{split}$$
(2)

Here, $\Psi(\gamma_{\beta}^2)$ is strictly monotonic if ϕ is strictly monotonic —so γ_{β}^2 can be recovered via inversion.

Estimators for $\mu = 0$

$$\gamma_{\beta}^{2} := \mathbb{U}_{n,2}[\mathbf{y}_{1}\mathbf{x}_{1}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{x}_{2}\mathbf{y}_{2}], \quad \hat{\mathbf{m}}_{\beta_{j}}^{2} := \mathbb{U}_{n,1}[\mathbf{y}_{1}\mathbf{x}_{1}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{e}_{j}]$$

$$\hat{\gamma}_{\beta}^{2} = \Psi^{-1}(\hat{\mathbf{m}}_{xy,2}), \quad \hat{\beta}_{j}^{2} = \frac{\hat{\mathbf{m}}_{\beta_{j}}}{f_{1}(0,\hat{\gamma}_{\beta}^{2})}$$
(3)

$$\mathbb{E}[\mathbf{x}\mathbf{y}] = f_1(\lambda_{\boldsymbol{\beta}}, \gamma_{\boldsymbol{\beta}}^2)\boldsymbol{\Sigma}\,\boldsymbol{\beta} + f_0(\lambda_{\boldsymbol{\beta}}, \gamma_{\boldsymbol{\beta}}^2)\boldsymbol{\mu}$$

When $\mu = 0$, the expression simplifies:

 $\mathbb{E}[\mathbf{x}\mathbf{y}] = \mathbf{f}_1(0, \boldsymbol{\gamma}_{\boldsymbol{\beta}}^2) \boldsymbol{\Sigma} \boldsymbol{\beta}$

Identification Equations for $\mu=0$

$$\begin{split} \mathbf{m}_{\mathbf{x}\mathbf{y},2} &\coloneqq \mathbb{E}[\mathbf{y}_1 \mathbf{x}_1^\top \boldsymbol{\Sigma}^{-1} \mathbf{x}_2 \mathbf{y}_2] = \mathbf{f}_1^2(0, \gamma_{\boldsymbol{\beta}}^2) \cdot \gamma_{\boldsymbol{\beta}}^2 \eqqcolon \Psi(\gamma_{\boldsymbol{\beta}}^2) \\ \mathbf{m}_{\boldsymbol{\beta}_j} &\coloneqq \mathbb{E}[\mathbf{y} \mathbf{x}^\top] \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_j = \mathbf{f}_1(0, \gamma_{\boldsymbol{\beta}}^2) \cdot \boldsymbol{\beta}_j \end{split}$$
(2)

Here, $\Psi(\gamma_{\beta}^2)$ is strictly monotonic if ϕ is strictly monotonic —so γ_{β}^2 can be recovered via inversion.

Estimators for $\mu=0$

$$\hat{\mathbf{m}}_{\mathbf{x}\mathbf{y},2} \coloneqq \mathbb{U}_{n,2}[\mathbf{y}_1 \mathbf{x}_1^\top \boldsymbol{\Sigma}^{-1} \mathbf{x}_2 \mathbf{y}_2], \quad \hat{\mathbf{m}}_{\boldsymbol{\beta}_j} \coloneqq \mathbb{U}_{n,1}[\mathbf{y}_1 \mathbf{x}_1^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_j]$$

$$\hat{\gamma}_{\boldsymbol{\beta}}^2 = \Psi^{-1}(\hat{\mathbf{m}}_{\mathbf{x}\mathbf{y},2}), \quad \hat{\boldsymbol{\beta}}_j = \frac{\hat{\mathbf{m}}_{\boldsymbol{\beta}_j}}{f_1(0, \hat{\gamma}_{\boldsymbol{\beta}}^2)}$$

$$(3)$$

• Let's take a closer look at the quadratic form $\|\boldsymbol{\beta}\|_{\Sigma}^2$

$$\|\hat{\boldsymbol{\beta}}\|_{\Sigma}^{2} \coloneqq \mathbb{U}_{n,2}\left[\mathbf{y}_{1}\mathbf{x}_{1}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{x}_{2}\mathbf{y}_{2}\right]$$

• Since it is unbiased, we only need to compute its variance, by Hoeffding decomposition,

$$\operatorname{var}\left(\|\hat{oldsymbol{eta}}\|_{\Sigma}^{2}
ight)\lesssimrac{1}{n}+rac{p}{n^{2}}\lesssimrac{1}{n}$$

• In terms of CAN, one can use martingale CLT to show

$$\sqrt{n}\left(\|\hat{\boldsymbol{\beta}}\|_{\Sigma}^{2}-\|\boldsymbol{\beta}\|_{\Sigma}^{2}\right) \rightsquigarrow \mathrm{N}\left(0,\nu^{2}\right)$$

for some $u^2 > 0$ if $\beta \stackrel{W_2}{\to} \beta$ and spec $(\Sigma) \stackrel{W_2}{\to} S$, where spec (Σ) is the spectral distribution of Σ

• Let's take a closer look at the quadratic form $\|\boldsymbol{\beta}\|_{\Sigma}^2$

$$\|\hat{\boldsymbol{\beta}}\|_{\Sigma}^{2} \coloneqq \mathbb{U}_{n,2}\left[\mathbf{y}_{1}\mathbf{x}_{1}^{\top}\Sigma^{-1}\mathbf{x}_{2}\mathbf{y}_{2}\right]$$

• Since it is unbiased, we only need to compute its variance, by Hoeffding decomposition,

$$\operatorname{var}\left(\|\hat{oldsymbol{eta}}\|_{\Sigma}^{2}
ight)\lesssimrac{1}{n}+rac{p}{n^{2}}\overset{p/n
ightarrow\delta}{\lesssim}rac{1}{n}$$

• In terms of CAN, one can use martingale CLT to show

$$\sqrt{n}\left(\|\hat{\boldsymbol{\beta}}\|_{\Sigma}^{2}-\|\boldsymbol{\beta}\|_{\Sigma}^{2}\right) \rightsquigarrow \mathrm{N}\left(0,\nu^{2}\right)$$

for some $\nu^2 > 0$ if $\beta \stackrel{W_2}{\to} \beta$ and spec $(\Sigma) \stackrel{W_2}{\to} S$, where spec (Σ) is the spectral distribution of Σ

• Let's take a closer look at the quadratic form $\|\boldsymbol{\beta}\|_{\Sigma}^2$

$$\|\hat{\boldsymbol{\beta}}\|_{\Sigma}^{2} \coloneqq \mathbb{U}_{n,2}\left[\mathbf{y}_{1}\mathbf{x}_{1}^{\top}\Sigma^{-1}\mathbf{x}_{2}\mathbf{y}_{2}\right]$$

• Since it is unbiased, we only need to compute its variance, by Hoeffding decomposition,

$$\operatorname{var}\left(\|\hat{\boldsymbol{eta}}\|_{\Sigma}^{2}
ight)\lesssimrac{1}{n}+rac{p}{n^{2}}\overset{p/n
ightarrow\delta}{\lesssim}rac{1}{n}$$

• In terms of CAN, one can use martingale CLT to show

$$\sqrt{n}\left(\|\hat{\boldsymbol{\beta}}\|_{\Sigma}^{2}-\|\boldsymbol{\beta}\|_{\Sigma}^{2}\right) \rightsquigarrow \mathrm{N}\left(0,\nu^{2}\right)$$

for some $u^2 > 0$ if $\beta \stackrel{W_2}{\to} \beta$ and spec $(\Sigma) \stackrel{W_2}{\to} S$, where spec (Σ) is the spectral distribution of Σ

• Let's take a closer look at the quadratic form $\|\boldsymbol{\beta}\|_{\Sigma}^2$

$$\|\hat{\boldsymbol{\beta}}\|_{\Sigma}^{2} \coloneqq \mathbb{U}_{n,2}\left[\mathbf{y}_{1}\mathbf{x}_{1}^{\top}\Sigma^{-1}\mathbf{x}_{2}\mathbf{y}_{2}\right]$$

• Since it is unbiased, we only need to compute its variance, by Hoeffding decomposition,

$$\mathsf{var}\left(\|\hat{\boldsymbol{\beta}}\|_{\Sigma}^{2}\right) \lesssim \frac{1}{n} + \frac{p}{n^{2}} \overset{p/n \to \delta}{\lesssim} \frac{1}{n}$$

• In terms of CAN, one can use martingale CLT to show

$$\sqrt{n} \left(\|\hat{\boldsymbol{\beta}}\|_{\Sigma}^{2} - \|\boldsymbol{\beta}\|_{\Sigma}^{2} \right) \rightsquigarrow \operatorname{N}\left(0, \nu^{2}\right)$$

for some $\nu^2 > 0$ if $\beta \xrightarrow{W_2} \beta$ and spec $(\Sigma) \xrightarrow{W_2} S$, where spec (Σ) is the spectral distribution of Σ

• Let's take a closer look at the quadratic form $\|\boldsymbol{\beta}\|_{\Sigma}^2$

$$\|\hat{\boldsymbol{\beta}}\|_{\Sigma}^{2} \coloneqq \mathbb{U}_{n,2}\left[\mathbf{y}_{1}\mathbf{x}_{1}^{\top}\Sigma^{-1}\mathbf{x}_{2}\mathbf{y}_{2}\right]$$

• Since it is unbiased, we only need to compute its variance, by Hoeffding decomposition,

$$\mathsf{var}\left(\|\hat{\boldsymbol{\beta}}\|_{\Sigma}^{2}\right) \lesssim \frac{1}{n} + \frac{p}{n^{2}} \overset{p/n \to \delta}{\lesssim} \frac{1}{n}$$

• In terms of CAN, one can use martingale CLT to show

$$\sqrt{n} \left(\|\hat{\boldsymbol{\beta}}\|_{\Sigma}^{2} - \|\boldsymbol{\beta}\|_{\Sigma}^{2} \right) \rightsquigarrow \operatorname{N}\left(0, \nu^{2}\right)$$

for some $\nu^2 > 0$ if $\beta \xrightarrow{W_2} \beta$ and spec $(\Sigma) \xrightarrow{W_2} S$, where spec (Σ) is the spectral distribution of Σ

Identification Equations for Unknown μ

$$\begin{split} \mathbf{m}_{1} &\coloneqq \mathbf{m}_{\mathbf{y}} = \mathbf{f}_{0}(\lambda_{\beta}, \gamma_{\beta}^{2}), \\ \mathbf{m}_{2} &\coloneqq \mathbf{m}_{\mathbf{x}\mathbf{y},2} + \mathbf{m}_{\mathbf{y}}^{2} \cdot \mathbf{m}_{\mathbf{x},2} - 2 \cdot \mathbf{m}_{\mathbf{y}} \cdot \mathbf{m}_{\mathbf{x}\mathbf{y},\mathbf{x}} = \mathbf{f}_{1}^{2}(\lambda_{\beta}, \gamma_{\beta}^{2}) \cdot \gamma_{\beta}^{2}, \\ \Psi_{GLM} &: (\lambda_{\beta}, \gamma_{\beta}^{2}) \to (m_{1}, \mathbf{m}_{2}). \end{split}$$
(4)
$$\mathbf{m}_{\nu_{j}} &\coloneqq \mathbb{E}[\mathbf{x}]^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_{j} = \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_{j} = \boldsymbol{\nu}^{\top} \boldsymbol{e}_{j} = \nu_{j}, \\ \mathbf{m}_{\beta_{j}} &\coloneqq \mathbb{E}[\mathbf{y}\mathbf{x}^{\top}] \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_{j} = \mathbf{f}_{0}(\lambda_{\beta}, \gamma_{\beta}^{2}) \cdot \nu_{j} + \mathbf{f}_{1}(\lambda_{\beta}, \gamma_{\beta}^{2}) \cdot \boldsymbol{\beta}_{j}. \end{split}$$

Estimators for Unknown μ

$$\hat{m}_{1} \coloneqq \hat{m}_{y} \coloneqq \mathbb{U}_{n,1}[y], \quad \hat{m}_{2} \coloneqq \hat{m}_{xy,2} + \hat{m}_{y}^{2} \cdot \hat{m}_{x,2} - 2 \cdot \hat{m}_{y} \cdot \hat{m}_{xy,x},
\hat{m}_{x,2} \coloneqq \mathbb{U}_{n,2}[\mathbf{x}_{1}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{2}], \quad \hat{m}_{xy,x} \coloneqq \mathbb{U}_{n,2}[y_{1}\mathbf{x}_{1}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{2}],
\hat{m}_{xy,2} \coloneqq \mathbb{U}_{n,2}[y_{1}\mathbf{x}_{1}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{2}y_{2}], \quad \hat{m}_{\nu_{j}} \coloneqq \mathbb{U}_{n,1}[\mathbf{x}^{\top}] \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_{j},
\hat{m}_{\beta_{j}} \coloneqq \mathbb{U}_{n,1}[y\mathbf{x}^{\top}] \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_{j}.$$

$$(\hat{\lambda}_{\beta}, \hat{\gamma}_{\beta}^{2}) \coloneqq \Psi_{GLM}^{-1}(\hat{m}_{1}, \hat{m}_{2}), \quad \hat{\beta}_{j} \coloneqq \frac{\hat{m}_{\beta_{j}} - f_{0}(\hat{\lambda}_{\beta}, \hat{\gamma}_{\beta}^{2}) \cdot \hat{m}_{\nu_{j}}}{f_{1}(\hat{\lambda}_{\beta}, \hat{\gamma}_{\beta}^{2})}.$$

Identification Equations for Unknown μ

$$\begin{split} \mathbf{m}_{1} &\coloneqq \mathbf{m}_{\mathbf{y}} = \mathbf{f}_{0}(\lambda_{\beta}, \gamma_{\beta}^{2}), \\ \mathbf{m}_{2} &\coloneqq \mathbf{m}_{\mathbf{x}\mathbf{y},2} + \mathbf{m}_{\mathbf{y}}^{2} \cdot \mathbf{m}_{\mathbf{x},2} - 2 \cdot \mathbf{m}_{\mathbf{y}} \cdot \mathbf{m}_{\mathbf{x}\mathbf{y},\mathbf{x}} = \mathbf{f}_{1}^{2}(\lambda_{\beta}, \gamma_{\beta}^{2}) \cdot \gamma_{\beta}^{2}, \\ \Psi_{GLM} &: (\lambda_{\beta}, \gamma_{\beta}^{2}) \to (\boldsymbol{m}_{1}, \mathbf{m}_{2}). \end{split}$$
(4)
$$\mathbf{m}_{\nu_{j}} &\coloneqq \mathbb{E}[\mathbf{x}]^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_{j} = \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_{j} = \boldsymbol{\nu}^{\top} \boldsymbol{e}_{j} = \nu_{j}, \\ \mathbf{m}_{\beta_{j}} &\coloneqq \mathbb{E}[\mathbf{y}\mathbf{x}^{\top}] \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_{j} = \mathbf{f}_{0}(\lambda_{\beta}, \gamma_{\beta}^{2}) \cdot \nu_{j} + \mathbf{f}_{1}(\lambda_{\beta}, \gamma_{\beta}^{2}) \cdot \boldsymbol{\beta}_{j}. \end{split}$$

Estimators for Unknown μ

$$\hat{m}_{1} \coloneqq \hat{m}_{y} \coloneqq \mathbb{U}_{n,1}[y], \quad \hat{m}_{2} \coloneqq \hat{m}_{xy,2} + \hat{m}_{y}^{2} \cdot \hat{m}_{x,2} - 2 \cdot \hat{m}_{y} \cdot \hat{m}_{xy,x},
\hat{m}_{x,2} \coloneqq \mathbb{U}_{n,2}[\mathbf{x}_{1}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{2}], \quad \hat{m}_{xy,x} \coloneqq \mathbb{U}_{n,2}[y_{1}\mathbf{x}_{1}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{2}],
\hat{m}_{xy,2} \coloneqq \mathbb{U}_{n,2}[y_{1}\mathbf{x}_{1}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{2}y_{2}], \quad \hat{m}_{\nu_{j}} \coloneqq \mathbb{U}_{n,1}[\mathbf{x}^{\top}] \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_{j},
\hat{m}_{\beta_{j}} \coloneqq \mathbb{U}_{n,1}[y\mathbf{x}^{\top}] \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_{j}.$$

$$(\hat{\lambda}_{\beta}, \hat{\gamma}_{\beta}^{2}) \coloneqq \Psi_{GLM}^{-1}(\hat{m}_{1}, \hat{m}_{2}), \quad \hat{\beta}_{j} \coloneqq \frac{\hat{m}_{\beta_{j}} - f_{0}(\hat{\lambda}_{\beta}, \hat{\gamma}_{\beta}^{2}) \cdot \hat{m}_{\nu_{j}}}{f_{1}(\hat{\lambda}_{\beta}, \hat{\gamma}_{\beta}^{2})}.$$

$$(5)$$

\sqrt{n} -consistency and CAN

Theorem 2 (C., Liu, Mukherjee, 24)

Under some mild conditions, when $\mathbf{x} \sim N(\boldsymbol{\mu}, \Sigma)$, the following is a \sqrt{n} -consistent and CAN estimator of $(\boldsymbol{\beta}_j, \lambda_{\boldsymbol{\beta}}, \gamma_{\boldsymbol{\beta}}^2)$

$$(\hat{\lambda_{\beta}}, \hat{\gamma_{\beta}^2}) \coloneqq \Psi_{GLM}^{-1}(\hat{m_1}, \hat{m_2}), \quad \hat{\beta_j} \coloneqq \frac{\hat{m_{\beta_j}} - f_0(\hat{\lambda_{\beta}}, \hat{\gamma_{\beta}}^2) \cdot \hat{m_{\nu_j}}}{f_1(\hat{\lambda_{\beta}}, \hat{\gamma_{\beta}}^2)}.$$

Proof sketch(Delta method).

 \sqrt{n} -consistency & CAN follow from (1) the \sqrt{n} -consistency & CAN of *U*-statistics; (2) Ψ_{GLM} is a diffeomorphism

- Identification Equations will be invariant.
- The knowledge of Σ influences the construction of moment estimators.
- One lazy method involves using a sample splitting strategy with weighted sample covariance under $l_1 \cup l_2 = [n]$, $|l_1| = |l_2| = n/2$

Moment Estimators with Unknown
$$\Sigma$$
 (Sample Splitting)

$$\hat{m}_{xy,2} \coloneqq \frac{1}{\frac{n}{2}(\frac{n}{2}-1)} \sum_{i_1 \neq i_2 \in I_1} y_{i_1} \mathbf{x}_{i_1}^\top \tilde{\Sigma}^{-1} \mathbf{x}_{i_2} y_{i_2},$$

$$\tilde{\Sigma} \coloneqq \frac{1}{\frac{n}{2}-p-1} \sum_{j \in I_2} (\mathbf{x}_j - \bar{\mathbf{x}}_{I_2}) (\mathbf{x}_j - \bar{\mathbf{x}}_{I_2})^\top, \quad \bar{\mathbf{x}}_{I_2} \coloneqq \frac{2}{n} \sum_{j \in I_2} \mathbf{x}_j.$$
(6)

- Identification Equations will be invariant.
- $\bullet\,$ The knowledge of Σ influences the construction of moment estimators.
- One lazy method involves using a sample splitting strategy with weighted sample covariance under $l_1 \cup l_2 = [n]$, $|l_1| = |l_2| = n/2$

Moment Estimators with Unknown Σ (Sample Splitting) $\hat{m}_{xy,2} \coloneqq \frac{1}{\frac{n}{2} \left(\frac{n}{2} - 1\right)} \sum_{i_1 \neq i_2 \in I_1} y_{i_1} \mathbf{x}_{i_1}^\top \tilde{\Sigma}^{-1} \mathbf{x}_{i_2} y_{i_2},$ $\tilde{\Sigma} \coloneqq \frac{1}{\frac{n}{2} - p - 1} \sum_{j \in I_2} (\mathbf{x}_j - \bar{\mathbf{x}}_{I_2}) (\mathbf{x}_j - \bar{\mathbf{x}}_{I_2})^\top, \quad \bar{\mathbf{x}}_{I_2} \coloneqq \frac{2}{n} \sum_{j \in I_2} \mathbf{x}_j.$ (6)

- Identification Equations will be invariant.
- $\bullet\,$ The knowledge of Σ influences the construction of moment estimators.
- One lazy method involves using a sample splitting strategy with weighted sample covariance under $I_1 \cup I_2 = [n], |I_1| = |I_2| = n/2$

- Identification Equations will be invariant.
- $\bullet\,$ The knowledge of Σ influences the construction of moment estimators.
- One lazy method involves using a sample splitting strategy with weighted sample covariance under $I_1 \cup I_2 = [n], |I_1| = |I_2| = n/2$

Moment Estimators with Unknown Σ (Sample Splitting) $\hat{m}_{\mathbf{xy},2} \coloneqq \frac{1}{\frac{n}{2} \left(\frac{n}{2} - 1\right)} \sum_{i_1 \neq i_2 \in I_1} \mathbf{y}_{i_1} \mathbf{x}_{i_1}^\top \tilde{\Sigma}^{-1} \mathbf{x}_{i_2} \mathbf{y}_{i_2},$ $\tilde{\Sigma} \coloneqq \frac{1}{\frac{n}{2} - p - 1} \sum_{j \in I_2} (\mathbf{x}_j - \bar{\mathbf{x}}_{I_2}) (\mathbf{x}_j - \bar{\mathbf{x}}_{I_2})^\top, \quad \bar{\mathbf{x}}_{I_2} \coloneqq \frac{2}{n} \sum_{j \in I_2} \mathbf{x}_j.$ (6)

- The sample splitting strategy will no longer useful when $p > \frac{n}{2}$.
- An alternative method involve the Chebyshev polynomial approximate first considered in Kong and Valiant 18

Moment Estimators Unknown Σ (Chebyshev) $\mu = 0$ $\Sigma^{-1} \approx \sum_{l=0}^{J} c_{l} \Sigma^{l},$ $\hat{m}_{\mathbf{xy},2} := \sum_{l=0}^{J} c_{l} \mathbb{U}_{n,l+2} \left[\mathbf{y}_{1} \mathbf{x}_{1}^{\top} \left(\prod_{s=3}^{l+2} \mathbf{x}_{s} \mathbf{x}_{s}^{\top} \right) \mathbf{x}_{2} \mathbf{y}_{2} \right].$ (7)

- The sample splitting strategy will no longer useful when $p > \frac{n}{2}$.
- An alternative method involve the Chebyshev polynomial approximate first considered in Kong and Valiant 18

- The sample splitting strategy will no longer useful when $p > \frac{n}{2}$.
- An alternative method involve the Chebyshev polynomial approximate first considered in Kong and Valiant 18

- The sample splitting strategy will no longer useful when $p > \frac{n}{2}$.
- An alternative method involve the Chebyshev polynomial approximate first considered in Kong and Valiant 18

- When x validate the Gaussian assumption, the Identification Equations above will no longer hold.
- But under some assumption, Identification Equations can hold approximately

Lemma 1 (C., Liu, Mukherjee, 24)

When $\Sigma^{-1/2}(\mathbf{X} - \mu)$ has zero mean and unit variance, the above Identification Equations approximately with approximation error $\mathcal{O}\left(p^{-3/4}\right) = \mathcal{O}\left(n^{-3/4}\right)$ as $n \to \infty$.

- Thus, above results of \sqrt{n} -consistency or consistency still hold.
- As for CAN property we need some assumption on limiting distribution on β and μ : $\sqrt{p}\Sigma^{1/2}\beta \xrightarrow{W_8} b$ and $\sqrt{p}\Sigma^{-1/2}\mu \xrightarrow{W_8} u$ where $b \sim \rho$ and $u \sim \varrho$ respectively for some probability measures ρ and ϱ supported on \mathbb{R} and both ρ and ϱ have bounded first and second moments.

- When x validate the Gaussian assumption, the Identification Equations above will no longer hold.
- But under some assumption, Identification Equations can hold approximately

Lemma 1 (C., Liu, Mukherjee, 24)

When $\Sigma^{-1/2}(\mathbf{X} - \boldsymbol{\mu})$ has zero mean and unit variance, the above Identification Equations approximately with approximation error $\mathcal{O}\left(p^{-3/4}\right) = \mathcal{O}\left(n^{-3/4}\right)$ as $n \to \infty$.

- Thus, above results of \sqrt{n} -consistency or consistency still hold.
- As for CAN property we need some assumption on limiting distribution on β and μ : $\sqrt{p}\Sigma^{1/2}\beta \xrightarrow{W_8} b$ and $\sqrt{p}\Sigma^{-1/2}\mu \xrightarrow{W_8} u$ where $b \sim \rho$ and $u \sim \varrho$ respectively for some probability measures ρ and ϱ supported on \mathbb{R} and both ρ and ϱ have bounded first and second moments.

- When x validate the Gaussian assumption, the Identification Equations above will no longer hold.
- But under some assumption, Identification Equations can hold approximately

Lemma 1 (C., Liu, Mukherjee, 24)

When $\Sigma^{-1/2}(\mathbf{X} - \boldsymbol{\mu})$ has zero mean and unit variance, the above Identification Equations approximately with approximation error $\mathcal{O}\left(p^{-3/4}\right) = \mathcal{O}\left(n^{-3/4}\right)$ as $n \to \infty$.

- Thus, above results of \sqrt{n} -consistency or consistency still hold.
- As for CAN property we need some assumption on limiting distribution on β and μ : $\sqrt{p}\Sigma^{1/2}\beta \xrightarrow{\mathcal{W}_8} b$ and $\sqrt{p}\Sigma^{-1/2}\mu \xrightarrow{\mathcal{W}_8} u$ where $b \sim \rho$ and $u \sim \varrho$ respectively for some probability measures ρ and ϱ supported on \mathbb{R} and both ρ and ϱ have bounded first and second moments.

- When x validate the Gaussian assumption, the Identification Equations above will no longer hold.
- But under some assumption, Identification Equations can hold approximately

Lemma 1 (C., Liu, Mukherjee, 24)

When $\Sigma^{-1/2}(\mathbf{X} - \boldsymbol{\mu})$ has zero mean and unit variance, the above Identification Equations approximately with approximation error $\mathcal{O}\left(p^{-3/4}\right) = \mathcal{O}\left(n^{-3/4}\right)$ as $n \to \infty$.

- Thus, above results of \sqrt{n} -consistency or consistency still hold.
- As for CAN property we need some assumption on limiting distribution on β and μ : $\sqrt{p}\Sigma^{1/2}\beta \xrightarrow{W_8} b$ and $\sqrt{p}\Sigma^{-1/2}\mu \xrightarrow{W_8} u$ where $b \sim \rho$ and $u \sim \varrho$ respectively for some probability measures ρ and ϱ supported on \mathbb{R} and both ρ and ϱ have bounded first and second moments.

- Confidence intervals can also be built by using the following bootstrap procedure
- Taking the estimator $\hat{m} \coloneqq \mathbb{U}_{n,2}[y_1x_1^\top \Sigma^{-1}x_2y_2]$ of $m \coloneqq \mathsf{E}[yx^\top]\Sigma^{-1}\mathsf{E}[xy]$ as an example
- Drawing weights $\{\mathbf{w}_i^{(b)}\}_{i=1}^n \sim \mathsf{multinom}(n; 1/n, \cdots, 1/n)$ for $b = 1, \cdots, B$
- For $b = 1, \dots, B$, compute $\hat{\mathbf{m}}^{(b)} \coloneqq \mathbb{U}_{n,2}[\mathbf{w}_1^{(b)}\mathbf{y}_1\mathbf{x}_1^{\top}\Sigma^{-1}\mathbf{w}_2^{(b)}\mathbf{x}_2\mathbf{y}_2],$ $\hat{\mathbf{m}}^{(b)}_{\text{center}} \coloneqq \mathbb{U}_{n,2}[(\mathbf{w}_1^{(b)} - 1)\mathbf{y}_1\mathbf{x}_1^{\top}\Sigma^{-1}(\mathbf{w}_2^{(b)} - 1)\mathbf{x}_2\mathbf{y}_2]$
- Estimate the variance of \hat{m} by

$$\hat{V} \coloneqq \frac{1}{B} \sum_{b=1}^{B} \left(\hat{\mathbf{m}}^{(b)} - \frac{1}{B} \sum_{b'=1}^{B} \hat{\mathbf{m}}^{(b')} \right)^2 - \frac{2}{B} \sum_{b=1}^{B} \left(\hat{\mathbf{m}}^{(b)}_{\text{center}} - \frac{1}{B} \sum_{b'=1}^{B} \hat{\mathbf{m}}^{(b')}_{\text{center}} \right)^2$$

- Confidence intervals can also be built by using the following bootstrap procedure
- Taking the estimator $\hat{m} \coloneqq \mathbb{U}_{n,2}[y_1 \mathbf{x}_1^\top \Sigma^{-1} \mathbf{x}_2 y_2]$ of $m \coloneqq \mathsf{E}[y \mathbf{x}^\top] \Sigma^{-1} \mathsf{E}[\mathbf{x} y]$ as an example
- Drawing weights $\{\mathbf{w}_i^{(b)}\}_{i=1}^n \sim \mathsf{multinom}(n; 1/n, \cdots, 1/n)$ for $b = 1, \cdots, B$
- For $b = 1, \dots, B$, compute $\hat{\mathbf{m}}^{(b)} \coloneqq \mathbb{U}_{n,2}[\mathbf{w}_1^{(b)}\mathbf{y}_1\mathbf{x}_1^{\top}\Sigma^{-1}\mathbf{w}_2^{(b)}\mathbf{x}_2\mathbf{y}_2],$ $\hat{\mathbf{m}}^{(b)}_{\text{center}} \coloneqq \mathbb{U}_{n,2}[(\mathbf{w}_1^{(b)} - 1)\mathbf{y}_1\mathbf{x}_1^{\top}\Sigma^{-1}(\mathbf{w}_2^{(b)} - 1)\mathbf{x}_2\mathbf{y}_2]$
- \bullet Estimate the variance of \hat{m} by

$$\hat{V} \coloneqq \frac{1}{B} \sum_{b=1}^{B} \left(\hat{\mathbf{m}}^{(b)} - \frac{1}{B} \sum_{b'=1}^{B} \hat{\mathbf{m}}^{(b')} \right)^2 - \frac{2}{B} \sum_{b=1}^{B} \left(\hat{\mathbf{m}}^{(b)}_{\text{center}} - \frac{1}{B} \sum_{b'=1}^{B} \hat{\mathbf{m}}^{(b')}_{\text{center}} \right)^2$$

- Confidence intervals can also be built by using the following bootstrap procedure
- Taking the estimator $\hat{m}\coloneqq \mathbb{U}_{n,2}[y_1x_1^\top\Sigma^{-1}x_2y_2]$ of $m\coloneqq \mathsf{E}[yx^\top]\Sigma^{-1}\mathsf{E}[xy]$ as an example
- Drawing weights $\{\mathbf{w}_i^{(b)}\}_{i=1}^n \sim \mathsf{multinom}(n; 1/n, \cdots, 1/n)$ for $b = 1, \cdots, B$

• For
$$b = 1, \dots, B$$
, compute
 $\hat{\mathbf{m}}^{(b)} \coloneqq \mathbb{U}_{n,2}[\mathbf{w}_1^{(b)}\mathbf{y}_1\mathbf{x}_1^{\top}\Sigma^{-1}\mathbf{w}_2^{(b)}\mathbf{x}_2\mathbf{y}_2],$
 $\hat{\mathbf{m}}^{(b)}_{\text{center}} \coloneqq \mathbb{U}_{n,2}[(\mathbf{w}_1^{(b)} - 1)\mathbf{y}_1\mathbf{x}_1^{\top}\Sigma^{-1}(\mathbf{w}_2^{(b)} - 1)\mathbf{x}_2\mathbf{y}_2]$

 \bullet Estimate the variance of \hat{m} by

$$\hat{V} \coloneqq \frac{1}{B} \sum_{b=1}^{B} \left(\hat{\mathbf{m}}^{(b)} - \frac{1}{B} \sum_{b'=1}^{B} \hat{\mathbf{m}}^{(b')} \right)^2 - \frac{2}{B} \sum_{b=1}^{B} \left(\hat{\mathbf{m}}^{(b)}_{\text{center}} - \frac{1}{B} \sum_{b'=1}^{B} \hat{\mathbf{m}}^{(b')}_{\text{center}} \right)^2$$

- Confidence intervals can also be built by using the following bootstrap procedure
- Taking the estimator $\hat{m} \coloneqq \mathbb{U}_{n,2}[y_1 \mathbf{x}_1^\top \Sigma^{-1} \mathbf{x}_2 y_2]$ of $m \coloneqq \mathsf{E}[y \mathbf{x}^\top] \Sigma^{-1} \mathsf{E}[\mathbf{x} y]$ as an example
- Drawing weights $\{\mathbf{w}_i^{(b)}\}_{i=1}^n \sim \text{multinom}(n; 1/n, \cdots, 1/n)$ for $b = 1, \cdots, B$
- For $b = 1, \dots, B$, compute $\hat{\mathbf{m}}^{(b)} \coloneqq \mathbb{U}_{n,2}[\mathbf{w}_1^{(b)}\mathbf{y}_1\mathbf{x}_1^{\top}\Sigma^{-1}\mathbf{w}_2^{(b)}\mathbf{x}_2\mathbf{y}_2],$ $\hat{\mathbf{m}}^{(b)}_{\text{center}} \coloneqq \mathbb{U}_{n,2}[(\mathbf{w}_1^{(b)} - 1)\mathbf{y}_1\mathbf{x}_1^{\top}\Sigma^{-1}(\mathbf{w}_2^{(b)} - 1)\mathbf{x}_2\mathbf{y}_2]$
- \bullet Estimate the variance of \hat{m} by

$$\hat{V} \coloneqq \frac{1}{B} \sum_{b=1}^{B} \left(\hat{\mathbf{m}}^{(b)} - \frac{1}{B} \sum_{b'=1}^{B} \hat{\mathbf{m}}^{(b')} \right)^2 - \frac{2}{B} \sum_{b=1}^{B} \left(\hat{\mathbf{m}}_{\text{center}}^{(b)} - \frac{1}{B} \sum_{b'=1}^{B} \hat{\mathbf{m}}_{\text{center}}^{(b')} \right)^2$$

- Confidence intervals can also be built by using the following bootstrap procedure
- Taking the estimator $\hat{m} \coloneqq \mathbb{U}_{n,2}[y_1 \mathbf{x}_1^\top \Sigma^{-1} \mathbf{x}_2 y_2]$ of $m \coloneqq \mathsf{E}[y \mathbf{x}^\top] \Sigma^{-1} \mathsf{E}[\mathbf{x} y]$ as an example
- Drawing weights $\{\mathbf{w}_i^{(b)}\}_{i=1}^n \sim \text{multinom}(n; 1/n, \cdots, 1/n)$ for $b = 1, \cdots, B$
- For $b = 1, \dots, B$, compute $\hat{\mathbf{m}}^{(b)} \coloneqq \mathbb{U}_{n,2}[\mathbf{w}_1^{(b)}\mathbf{y}_1\mathbf{x}_1^{\top}\Sigma^{-1}\mathbf{w}_2^{(b)}\mathbf{x}_2\mathbf{y}_2],$ $\hat{\mathbf{m}}^{(b)}_{\text{center}} \coloneqq \mathbb{U}_{n,2}[(\mathbf{w}_1^{(b)} - 1)\mathbf{y}_1\mathbf{x}_1^{\top}\Sigma^{-1}(\mathbf{w}_2^{(b)} - 1)\mathbf{x}_2\mathbf{y}_2]$
- $\bullet\,$ Estimate the variance of \hat{m} by

$$\hat{V} \coloneqq \frac{1}{B} \sum_{b=1}^{B} \left(\hat{\mathbf{m}}^{(b)} - \frac{1}{B} \sum_{b'=1}^{B} \hat{\mathbf{m}}^{(b')} \right)^2 - \frac{2}{B} \sum_{b=1}^{B} \left(\hat{\mathbf{m}}^{(b)}_{\text{center}} - \frac{1}{B} \sum_{b'=1}^{B} \hat{\mathbf{m}}^{(b')}_{\text{center}} \right)^2$$

Outline

Motivations: Estimating Functionals of High-Dimensional GLMs

Our proposal – Moments-based estimators

Numerical experiments

Conclusion and open ends

A peek at some numerical results: GLMs

Figure: α_j 's in logistic regression: known Σ Gaussian design and $\boldsymbol{\alpha} = (\alpha_1, \cdots, \alpha_p) \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}([-\sqrt{3/p}, \sqrt{3/p}])$

A peek at some numerical results: GLMs

Figure: Comparision with Bellec 23: known Σ Gaussian design and $\boldsymbol{\alpha} = (\alpha_1, \cdots, \alpha_p) \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}([-\sqrt{3/p}, \sqrt{3/p}])$

Boostrap variance estimator: GLM

Table: Bootstrap Variance Estimators vs. Monte Carlo Variances under (Gaussian design and dense regression coefficients), Based on 500 Monte Carlo Simulations with n = 5000, p/n = 1.2. Here μ is unknown but Σ is known.

	MC Var	Mean Est. Var	<u>Mean Est. Var</u> MC Var	Std Est. Var	MSE
$\mathbb{E} A$	4.81e-05	5.01e-05	1.041	2.24e-06	3.00e-06
$\mathbb{E}[A\mathbf{X}^{ op}]\mathbf{\Sigma}^{-1}oldsymbol{\mu}$	4.38e-04	4.77e-04	1.091	7.04e-05	8.08e-05
$\mathbb{E}[A\mathbf{X}^{\top}]\mathbf{\Sigma}^{-1}\mathbb{E}[A\mathbf{X}]$	1.85e-04	1.87e-04	1.009	2.83e-05	2.84e-05
$\mathbb{E}[A\mathbf{X}^{ op}]\mathbf{\Sigma}^{-1}\mathbb{E}[A\mathbf{X}]$	1.41e-04	1.36e-04	0.965	2.03e-05	2.09e-05
$oldsymbol{lpha}^ opoldsymbol{\mu}$	2.96e-03	3.01e-03	1.017	1.62e-03	1.62e-03
$oldsymbol{lpha}^ op oldsymbol{\Sigma}oldsymbol{lpha}$	6.42e-02	6.76e-02	1.053	3.69e-02	3.71e-02
α_1	1.15e-03	1.20e-03	1.043	1.02e-04	1.13e-04
α_{100}	1.13e-03	1.20e-03	1.060	1.08e-04	1.28e-04

A peek at some numerical results: Estimating E[y] under MAR

Compared with Celentano & Wainwright, 23: based on debiased Lasso $+ \; \mathsf{AMP}$ theory under Gaussian design

Our approach: a system of moment equations can be used to identify $\psi = E[y] = \beta^{\top} \mu$ in the following model:

 $\mathbf{y} = \boldsymbol{\beta}^{\top} \mathbf{x} + \varepsilon, \mathbf{t} | \mathbf{x} \sim \text{Bern}(\boldsymbol{\phi}(\boldsymbol{\alpha}^{\top} \mathbf{x}))$

based on estimating the following moments

$$\begin{split} \mathsf{E}(t), \mathsf{E}(ty), \mathsf{E}(\mathbf{x}^{\top}) \Sigma^{-1} \mathsf{E}(\mathbf{x}), \mathsf{E}(t\mathbf{x}^{\top}) \Sigma^{-1} \mathsf{E}(\mathbf{x}), \\ \mathsf{E}(t\mathbf{x}^{\top}) \Sigma^{-1} \mathsf{E}(\mathbf{x}t), \mathsf{E}(\mathbf{x}^{\top}) \Sigma^{-1} \mathsf{E}(\mathbf{x}ty), \mathsf{E}(t\mathbf{x}^{\top}) \Sigma^{-1} \mathsf{E}(\mathbf{x}ty) \end{split}$$

A peek at some numerical results: Estimating E[y] under MAR

Compared with Celentano & Wainwright, 23: based on debiased Lasso $+ \; \mathsf{AMP}$ theory under Gaussian design

Our approach: a system of moment equations can be used to identify $\psi = \mathsf{E}[y] = \boldsymbol{\beta}^\top \boldsymbol{\mu}$ in the following model:

 $\mathbf{y} = \boldsymbol{\beta}^{\top} \mathbf{x} + \varepsilon, \mathbf{t} | \mathbf{x} \sim \text{Bern}(\boldsymbol{\phi}(\boldsymbol{\alpha}^{\top} \mathbf{x}))$

based on estimating the following moments

$$\begin{split} &\mathsf{E}(t),\mathsf{E}(ty),\mathsf{E}(\mathbf{x}^{\top})\boldsymbol{\Sigma}^{-1}\mathsf{E}(\mathbf{x}),\mathsf{E}(t\mathbf{x}^{\top})\boldsymbol{\Sigma}^{-1}\mathsf{E}(\mathbf{x}),\\ &\mathsf{E}(t\mathbf{x}^{\top})\boldsymbol{\Sigma}^{-1}\mathsf{E}(\mathbf{x}t),\mathsf{E}(\mathbf{x}^{\top})\boldsymbol{\Sigma}^{-1}\mathsf{E}(\mathbf{x}ty),\mathsf{E}(t\mathbf{x}^{\top})\boldsymbol{\Sigma}^{-1}\mathsf{E}(\mathbf{x}ty) \end{split}$$

Figure: α_j 's in logistic regression: known Σ , Gaussian design and $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_p) \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}([-\sqrt{3/p}, \sqrt{3/p}])$. Here $\phi(\mathbf{x}^{\top}\boldsymbol{\alpha}) = 0.1 + 0.9 \cdot \text{expit}(\mathbf{x}^{\top}\boldsymbol{\alpha})$.

Outline

Motivations: Estimating Functionals of High-Dimensional GLMs

Our proposal – Moments-based estimators

Numerical experiments

Conclusion and open ends

Conclusion and open ends

- We proposed a moments-based approach for estimating low-dimensional parameters of high-dimensional GLMs under the proportional asymptotic regime and it works well compared to competing methods in the current literature.
- Open ends:
 - More general designs semi-random, right orthogonally invariant, etc.
 - Better numerical algorithms for inverting the nonlinear maps?
 - Model misspecification

o •••