Arxiv Link

Introduction

Problem Setting and Questions:

o Samples: (A; € R, X; € RP) K P

e The distribution P is parameterized as:
X ~Px, E(A|X)=¢(a'X), var(A|X)=c*X)
where X has mean g and covariance X

e Asymptotic regime: P L se 0,+00) as n — o
n

How can we conduct inference on o
How can we conduct inference on |||l = a' Xa?
- How can we conduct inference on other functionals?

We focus on four settings, ranging from simple to com-
plex, to introduce our methodology:

e Case I (Gaussian, known g = 0 & known X):
X ~ N,(0,%), p =0, 3 is known
e Case II (Gaussian, unknown g & known X):

X ~ N,(p, 32), p is unknown, 33 is known

e Case III (Gaussian, unknown g & unknown X):
X ~ N,(p, 32), both g and 3 are unknown

e Case IV (Missing Data):
X ~ Ny(p, 3), p is unknown, ¥ is known.
In addition, we observe (Y;)™, with E[Y;|X;] = 8'X,
and assume A L Y | X.
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Figure 1: Root-n bias, variance, and mean squared error of estimators for ag

and ajgp under different assumptions on g and X, with p/n = 0.4.

Estimation in Case 111

In Case III, the identification equations remain the same
as in Case 11, i.e.,

Identification Equations for Unknown p

Same as (7).

The knowledge of 32 influences the construction of mo-
ment estimators. We propose two methods to address
this, each with theoretical guarantees.

One method involves using a sample splitting strategy
with weighted sample covariance:

Moment Estimators Unknown 3 (Sample Splitting)
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Another method uses Chebyshev polynomials to approx-
imate X1
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Estimation in Case I

Lemma 1 (Stein’s Lemma) Let X ~ N(u,X) and
let :RP — R be a differentiable function such that

all expectations below are finite. Then:

EXf(X)]=ZEVX)]+Ef(X)p (1)
For f(X) = ¢(a' X), we have:

E[XA] = E[X ¢(a” X)| = E[¢/(2)|S a + E[f(X)]u

(2)
Here and below, Z ~ a'X ~ N(a'u,|als), with
Ao = a'p and = ||a||%. We define (Ao, ) =
E["(2)]
Since g = 0 in Case I

Identification Equations for g = 0

maj = E[AXT]E_lej = fl((), )Oﬁj,

Since 2 is known in Case I, we construct U-statistics to
unbiasedly estimate the required moments:

Moment Estimators for g = 0

e _
Mg, = — E AX X e
1 1<i<n

—. Un 1[A1XT2_1€]]
MXA2 = = Z A X BIXG,A

1<217422<n

=) Un,Q [A1XIE 1X2A2]

(4)

We then plug the moment estimators from (4)) into the
identification equations (3)) and solve the system to ob-
tain the estimator for the parameter of interest.

V2 = U~ (xa,)

- Mg, 5

Olj = /j\ ( )
£,(0,72,)

Estimation in Case 1V

Now, we apply the methods discussed above to the Miss-

ing Data setting, also considered in [1].
Here, the observed data are (A;, X;, A; - Y;),, and the

parameter of interest is v = E[Y] =E[3'X] = 8" u

Identification Equations

Equations in (7)), plus two additional equations:
may = EAY | =mga - +1(Aa, 7)) - ,
MXAY X ‘= ElYAX 'S u

= (ma + mXij) - P+ (12)
Imxo- BNy 7)) +(Aay 7)) - Aot

where

As in [1], we use the knowledge of X, so the additional

moment estimators are the same as those in (8), and the

final estimator follows similarly. Comparation below:
Oracle ASCW Empirical SCA

Root n Bias
Root n Bias

1000 1000
n

Oracle ASCW Empirical SCA

|

1000 10000

Variance
Variance

Empirical SCA

0.00 k I

100 1000 10000

Figure 2: Root-n"Bias, Variance, and Mean Squared Errdr of Estimators for v,
comparing our method with two Ridge regression-based methods from [1].
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mx a2 = E[AX] S XA =£(0,7.)% - v2 = U(+.)

Estimation in Case 11

Since w is unknown in Case II, the identification equa-
tions are as follows:

Identification Equations for Unknown p

ma = E[A| =f)( Ao, 7.),

mx., = EX'STEX] =pu'S 'y,

mxax = E[AX'|S'E[X]

= Mm4 - Mmx2+ fl()\a, ) c Nevs

mxas = E[AX ]S 'E[AX]

= mi - mx 9+ f%()\a, ) R
2-my-ti(Aa, 7)) - Aa,

m, =E[X]'Z e, =pu'S'e;=v'e; =y,

Mme, = E[AX']X e,

= fo(Aa, 7)) - Vi F H (A, 70) - @y

The first four moments in () can be reduced to two
equations, which form a diffeomorphism map Ve

Reduced Identification Equations for Unknown g

My, = 1Myg = f()()\a, ),

Mo = Mx A2+ My Mx2— 2 M4 MXAX
— f12<)‘0é7 ) ' ;

\DGLM ) ()\a, ) —> (ml,mg).

(7)

Since X2 1s known in Case II:

Moment Estimators for Unknown g

a4 =Up1A]

X A2+ My - Mxs — 2+ M- MXAX,
where ix o = U, o[X{ E7'X0],

MXAX = Un,2[A1X1TE_1X2], (8)
Mmxa2 = U, o[ A1 X X7 XA,

my, = U, (X' ey,

Ma, = U, [AX]|E e;.

We then plug the moment estimators from (8)) into the
reduced identification equations ([7)):

N

()\aﬁ?x) = ‘I’GLM(mla ms),
~ aj — fO(Aaa T ) ' muj (9>
Oéj — ~ 5 .

fl()\aa Ve )

Theorem (Informal), Gaussian, CAN

When X is known, under some mild conditions, the
above estimators are all y/n-consistent.

Further assume that \/]_92_1/ ‘1, \/]32_1/ ¢, and
\/]32_1/ °3 and their inner products with respect to
-1 3, 32 39 converge to a nontrivial distribution.
Then, the above estimators, after scaling by +/n,
converge to a normal distribution.

When ¥ is unknown, for the method in (10), which
requires 5 > p + 3, we can show that our method is
v/n-consistent. For the method in (11)), we can show
that our method 1s consistent.

Theorem (Informal), Universality

When X violates the Gaussian distribution, but
»~1/2(X — p) has zero mean and unit variance, the
above identification equations (3), (6) hold with error

@, (n‘g/ 4) .

Thus, the above consistent results for the (Gaussian

model will still hold.

Variance Estimator

We use a bootstrap method to estimate the variance
of the U-statistics and then apply the Delta method to
estimate the variance of the parameters of interest.
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