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Introduction

Problem Setting and Questions:

• Samples: (Ai ∈ R,Xi ∈ Rp)ni=1
i.i.d.∼ P

•The distribution P is parameterized as:

X ∼ PX, E(A|X) = ϕ(α⊤X), var(A|X) = σ2(X)

where X has mean µ and covariance Σ

•Asymptotic regime:
p

n
→ δ ∈ [0,+∞) as n→ ∞

Questions

How can we conduct inference on α?
How can we conduct inference on ∥α∥2Σ := α⊤Σα?
How can we conduct inference on other functionals?

We focus on four settings, ranging from simple to com-
plex, to introduce our methodology:

•Case I (Gaussian, known µ = 0 & known Σ):
X ∼ Np(0,Σ), µ = 0, Σ is known

•Case II (Gaussian, unknown µ & known Σ):
X ∼ Np(µ,Σ), µ is unknown, Σ is known

•Case III (Gaussian, unknown µ & unknown Σ):
X ∼ Np(µ,Σ), both µ and Σ are unknown

•Case IV (Missing Data):
X ∼ Np(µ,Σ), µ is unknown, Σ is known.
In addition, we observe (Yi)

n
i=1 with E[Yi|Xi] = β⊤Xi

and assume A ⊥ Y | X.
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Figure 1: Root-n bias, variance, and mean squared error of estimators for α1

and α100 under different assumptions on µ and Σ, with p/n = 0.4.

Estimation in Case I

Lemma 1 (Stein’s Lemma)Let X ∼ N (µ,Σ) and
let f : Rp → R be a differentiable function such that
all expectations below are finite. Then:

E[Xf (X)] = ΣE[∇f (X)] + E[f (X)]µ (1)

For f (X) = ϕ(α⊤X), we have:

E[XA] = E[Xϕ(α⊤X)] = E[ϕ′(Z)]Σα + E[f (X)]µ
(2)

Here and below, Z ∼ α⊤X ∼ N (α⊤µ, ∥α∥2Σ), with
λα := α⊤µ and γ2α := ∥α∥2Σ. We define fi(λα, γ

2
α) :=

E[ϕ(i)(Z)].
Since µ = 0 in Case I:

Identification Equations for µ = 0

mαj
:= E[AX⊤]Σ−1ej = f1(0, γ

2
α)αj,

mXA,2 := E[A1X
⊤
1 Σ

−1X2A2] = f1(0, γ
2
α)

2 · γ2α =: Ψ(γ2α)
(3)

Since Σ is known in Case I, we construct U -statistics to
unbiasedly estimate the required moments:

Moment Estimators for µ = 0

m̂αj
:=

1

n

∑
1≤i≤n

AiX
⊤
i Σ

−1ej

=: Un,1[A1X
⊤
1 Σ

−1ej],

m̂XA,2 :=
1

n(n− 1)

∑
1≤i1 ̸=i2≤n

Ai1X
⊤
i1
Σ−1Xi2Ai2

=: Un,2[A1X
⊤
1 Σ

−1X2A2]

(4)

We then plug the moment estimators from (4) into the
identification equations (3) and solve the system to ob-
tain the estimator for the parameter of interest.

γ̂2α = Ψ−1(m̂XA,2)

α̂j =
m̂αj

f1(0, γ̂2α)

(5)

Estimation in Case II

Since µ is unknown in Case II, the identification equa-
tions are as follows:

Identification Equations for Unknown µ

mA := E[A] = f0(λα, γ
2
α),

mX,2 := E[X⊤]Σ−1E[X] = µ⊤Σ−1µ,

mXA,X := E[AX⊤]Σ−1E[X]

= mA ·mX,2 + f1(λα, γ
2
α) · λα,

mXA,2 := E[AX⊤]Σ−1E[AX]

= m2
A ·mX,2 + f21(λα, γ

2
α) · γ2α+

2 ·mA · f1(λα, γ2α) · λα,
mνj := E[X]⊤Σ−1ej = µ⊤Σ−1ej = ν⊤ej = νj,

mαj
:= E[AX⊤]Σ−1ej

= f0(λα, γ
2
α) · νj + f1(λα, γ

2
α) ·αj.

(6)

The first four moments in (6) can be reduced to two
equations, which form a diffeomorphism map ΨGLM :

Reduced Identification Equations for Unknown µ

m1 := mA = f0(λα, γ
2
α),

m2 := mXA,2 +m2
A ·mX,2 − 2 ·mA ·mXA,X

= f21(λα, γ
2
α) · γ2α,

ΨGLM : (λα, γ
2
α) → (m1,m2).

(7)

Since Σ is known in Case II:

Moment Estimators for Unknown µ

m̂1 := m̂A := Un,1[A],

m̂2 := m̂XA,2 + m̂2
A · m̂X,2 − 2 · m̂A · m̂XA,X,

where m̂X,2 := Un,2[X
⊤
1 Σ

−1X2],

m̂XA,X := Un,2[A1X
⊤
1 Σ

−1X2],

m̂XA,2 := Un,2[A1X
⊤
1 Σ

−1X2A2],

m̂νj := Un,1[X
⊤]Σ−1ej,

m̂αj
:= Un,1[AX

⊤]Σ−1ej.

(8)

We then plug the moment estimators from (8) into the
reduced identification equations (7):

(λ̂α, γ̂2α) := Ψ−1
GLM(m̂1, m̂2),

α̂j :=
m̂αj

− f0(λ̂α, γ̂α
2) · m̂νj

f1(λ̂α, γ̂α
2)

.
(9)

Estimation in Case III

In Case III, the identification equations remain the same
as in Case II, i.e.,

Identification Equations for Unknown µ

Same as (7).

The knowledge of Σ influences the construction of mo-
ment estimators. We propose two methods to address
this, each with theoretical guarantees.
One method involves using a sample splitting strategy
with weighted sample covariance:

Moment Estimators Unknown Σ (Sample Splitting)

Σ̃ :=
1

n
2 − p− 1

∑
j∈I2

(Xj − X̄I2)(Xj − X̄I2)
⊤,

where X̄I2 :=
1

n/2

∑
j∈I2

Xj,

m̂XA,2 :=
1

n
2

(
n
2 − 1

) ∑
i1 ̸=i2∈I1

Ai1X
⊤
i1
Σ̃−1Xi2Ai2.

(10)

Another method uses Chebyshev polynomials to approx-
imate Σ−1:

Moment Estimators Unknown Σ (Chebyshev)

Σ−1 ≈
J∑
l=0

clΣ
l,

m̂XA,2 :=

J∑
l=0

clUn,l+2

[
A1X

⊤
1

(
l+2∏
s=3

XsX
⊤
s

)
X2A2

]
.

(11)

Estimation in Case IV

Now, we apply the methods discussed above to the Miss-
ing Data setting, also considered in [1].
Here, the observed data are (Ai, Xi, Ai · Yi)ni=1, and the
parameter of interest is ψ := E[Y ] = E[β⊤X] = β⊤µ.

Identification Equations

Equations in (7), plus two additional equations:

mAY := E[AY ] = mA · ψ + f1(λα, γ
2
α) · γα,β,

mXAY,X := E[Y AX⊤]Σ−1µ

= (mA +mXA,X) · ψ+{
mX,2 · f1(λα, γ2α) + f2(λα, γ

2
α) · λα

}
· γα,β,

where γα,β := α⊤Σβ.

(12)

As in [1], we use the knowledge of Σ, so the additional
moment estimators are the same as those in (8), and the
final estimator follows similarly. Comparation below:
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Figure 2: Root-n Bias, Variance, and Mean Squared Error of Estimators for ψ,
comparing our method with two Ridge regression-based methods from [1].

Theorem (Informal), Gaussian, CAN

When Σ is known, under some mild conditions, the
above estimators are all

√
n-consistent.

Further assume that
√
pΣ−1/2µ,

√
pΣ−1/2α, and√

pΣ−1/2β and their inner products with respect to
Σ−1, Σ, Σ2, Σ3 converge to a nontrivial distribution.
Then, the above estimators, after scaling by

√
n,

converge to a normal distribution.

When Σ is unknown, for the method in (10), which
requires n

2 > p + 3, we can show that our method is√
n-consistent. For the method in (11), we can show

that our method is consistent.

Theorem (Informal), Universality

When X violates the Gaussian distribution, but
Σ−1/2(X − µ) has zero mean and unit variance, the
above identification equations (3), (6) hold with error
O
(
n−3/4

)
.

Thus, the above consistent results for the Gaussian
model will still hold.

Variance Estimator
We use a bootstrap method to estimate the variance
of the U-statistics and then apply the Delta method to
estimate the variance of the parameters of interest.
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