

METHOD-OF-MOMENTS INFERENCE FOR GLMs

Xingyu Chen, Lin Liu, Rajarshi Mukherjee

Introduction

Problem Setting and Questions:

- Samples: $(A_i \in \mathbb{R}, \mathbf{X}_i \in \mathbb{R}^p)_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}$
- The distribution \mathbb{P} is parameterized as: $\mathbf{X} \sim \mathbb{P}_{\mathbf{X}}, \mathbb{E}(A|\mathbf{X}) = \phi(\boldsymbol{\alpha}^\top \mathbf{X}), \text{var}(A|\mathbf{X}) = \sigma^2(\mathbf{X})$ where \mathbf{X} has mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$
- Asymptotic regime: $\frac{p}{n} \rightarrow \delta \in [0, +\infty)$ as $n \rightarrow \infty$

Questions

- How can we conduct inference on $\boldsymbol{\alpha}$?
- How can we conduct inference on $\|\boldsymbol{\alpha}\|_{\boldsymbol{\Sigma}}^2 := \boldsymbol{\alpha}^\top \boldsymbol{\Sigma} \boldsymbol{\alpha}$?
- How can we conduct inference on other functionals?

We focus on four settings, ranging from simple to complex, to introduce our methodology:

• Case I (Gaussian, known $\boldsymbol{\mu} = 0$ & known $\boldsymbol{\Sigma}$):

$\mathbf{X} \sim N_p(\mathbf{0}, \boldsymbol{\Sigma})$, $\boldsymbol{\mu} = 0$, $\boldsymbol{\Sigma}$ is known

• Case II (Gaussian, unknown $\boldsymbol{\mu}$ & known $\boldsymbol{\Sigma}$):

$\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $\boldsymbol{\mu}$ is unknown, $\boldsymbol{\Sigma}$ is known

• Case III (Gaussian, unknown $\boldsymbol{\mu}$ & unknown $\boldsymbol{\Sigma}$):

$\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, both $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are unknown

• Case IV (Missing Data):

$\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $\boldsymbol{\mu}$ is unknown, $\boldsymbol{\Sigma}$ is known.

In addition, we observe $(Y_i)_{i=1}^n$ with $\mathbb{E}[Y_i|\mathbf{X}_i] = \boldsymbol{\beta}^\top \mathbf{X}_i$ and assume $A \perp Y | \mathbf{X}$.

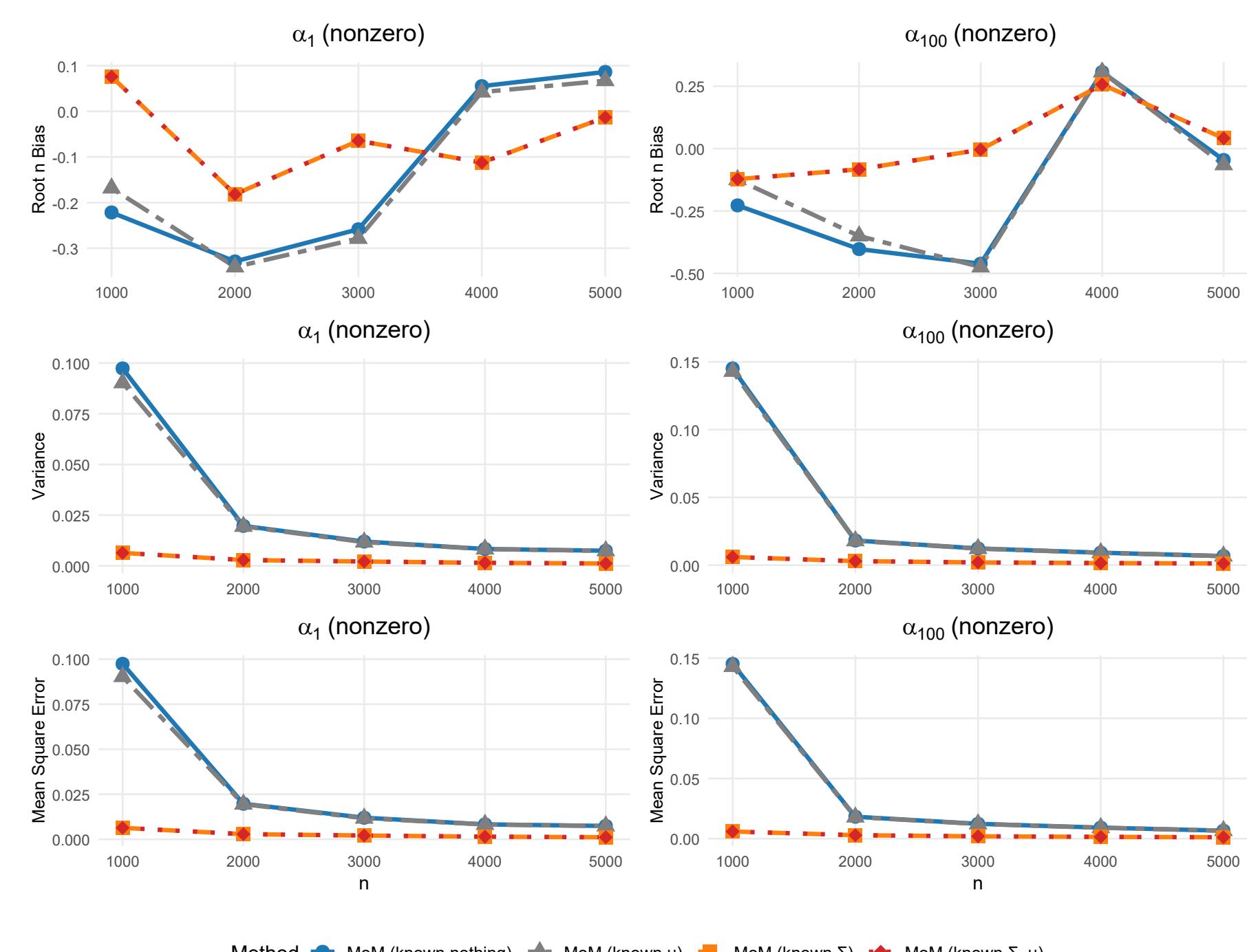


Figure 1: Root- n bias, variance, and mean squared error of estimators for α_1 and α_{100} under different assumptions on $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, with $p/n = 0.4$.

Estimation in Case III

In Case III, the identification equations remain the same as in Case II, i.e.,

Identification Equations for Unknown $\boldsymbol{\mu}$

Same as (7).

The knowledge of $\boldsymbol{\Sigma}$ influences the construction of moment estimators. We propose two methods to address this, each with theoretical guarantees.

One method involves using a sample splitting strategy with weighted sample covariance:

Moment Estimators Unknown $\boldsymbol{\Sigma}$ (Sample Splitting)

$$\begin{aligned} \tilde{\boldsymbol{\Sigma}} &:= \frac{1}{\frac{n}{2} - p - 1} \sum_{j \in I_2} (\mathbf{X}_j - \bar{\mathbf{X}}_{I_2})(\mathbf{X}_j - \bar{\mathbf{X}}_{I_2})^\top, \\ \text{where } \bar{\mathbf{X}}_{I_2} &:= \frac{1}{n/2} \sum_{j \in I_2} \mathbf{X}_j, \\ \hat{m}_{\mathbf{X}A,2} &:= \frac{1}{\frac{n}{2}(\frac{n}{2} - 1)} \sum_{i_1 \neq i_2 \in I_1} A_{i_1} \mathbf{X}_{i_1}^\top \tilde{\boldsymbol{\Sigma}}^{-1} \mathbf{X}_{i_2} A_{i_2}. \end{aligned} \quad (10)$$

Another method uses Chebyshev polynomials to approximate $\boldsymbol{\Sigma}^{-1}$:

Moment Estimators Unknown $\boldsymbol{\Sigma}$ (Chebyshev)

$$\begin{aligned} \boldsymbol{\Sigma}^{-1} &\approx \sum_{l=0}^J c_l \boldsymbol{\Sigma}^l, \\ \hat{m}_{\mathbf{X}A,2} &:= \sum_{l=0}^J c_l \mathbb{U}_{n,l+2} \left[A_1 \mathbf{X}_1^\top \left(\prod_{s=3}^{l+2} \mathbf{X}_s \mathbf{X}_s^\top \right) \mathbf{X}_2 A_2 \right]. \end{aligned} \quad (11)$$

Estimation in Case I

Lemma 1 (Stein's Lemma) Let $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and let $f : \mathbb{R}^p \rightarrow \mathbb{R}$ be a differentiable function such that all expectations below are finite. Then:

$$\mathbb{E}[\mathbf{X}f(\mathbf{X})] = \boldsymbol{\Sigma} \mathbb{E}[\nabla f(\mathbf{X})] + \mathbb{E}[f(\mathbf{X})]\boldsymbol{\mu} \quad (1)$$

For $f(\mathbf{X}) = \phi(\boldsymbol{\alpha}^\top \mathbf{X})$, we have:

$$\mathbb{E}[\mathbf{X}A] = \mathbb{E}[\mathbf{X} \phi(\boldsymbol{\alpha}^\top \mathbf{X})] = \mathbb{E}[\phi'(\mathbf{Z})] \boldsymbol{\Sigma} \boldsymbol{\alpha} + \mathbb{E}[f(\mathbf{X})]\boldsymbol{\mu} \quad (2)$$

Here and below, $\mathbf{Z} \sim \boldsymbol{\alpha}^\top \mathbf{X} \sim \mathcal{N}(\boldsymbol{\alpha}^\top \boldsymbol{\mu}, \|\boldsymbol{\alpha}\|_{\boldsymbol{\Sigma}}^2)$, with $\boldsymbol{\lambda}_{\boldsymbol{\alpha}} := \boldsymbol{\alpha}^\top \boldsymbol{\mu}$ and $\gamma_{\boldsymbol{\alpha}}^2 := \|\boldsymbol{\alpha}\|_{\boldsymbol{\Sigma}}^2$. We define $f_i(\boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \gamma_{\boldsymbol{\alpha}}^2) := \mathbb{E}[\phi^{(i)}(\mathbf{Z})]$.

Since $\boldsymbol{\mu} = \mathbf{0}$ in Case I:

Identification Equations for $\boldsymbol{\mu} = \mathbf{0}$

$$\begin{aligned} m_{\alpha_j} &:= \mathbb{E}[A \mathbf{X}^\top \boldsymbol{\Sigma}^{-1} \mathbf{e}_j] = f_1(0, \gamma_{\boldsymbol{\alpha}}^2) \boldsymbol{\alpha}_j, \\ m_{\mathbf{X}A,2} &:= \mathbb{E}[A_1 \mathbf{X}_1^\top \boldsymbol{\Sigma}^{-1} \mathbf{X}_2 A_2] = f_1(0, \gamma_{\boldsymbol{\alpha}}^2)^2 \cdot \gamma_{\boldsymbol{\alpha}}^2 =: \Psi(\gamma_{\boldsymbol{\alpha}}^2) \end{aligned} \quad (3)$$

Since $\boldsymbol{\Sigma}$ is known in Case I, we construct U -statistics to unbiasedly estimate the required moments:

Moment Estimators for $\boldsymbol{\mu} = \mathbf{0}$

$$\begin{aligned} \widehat{m}_{\alpha_j} &:= \frac{1}{n} \sum_{1 \leq i \leq n} A_i \mathbf{X}_i^\top \boldsymbol{\Sigma}^{-1} \mathbf{e}_j \\ &=: \mathbb{U}_{n,1}[A_1 \mathbf{X}_1^\top \boldsymbol{\Sigma}^{-1} \mathbf{e}_j], \\ \widehat{m}_{\mathbf{X}A,2} &:= \frac{1}{n(n-1)} \sum_{1 \leq i_1 \neq i_2 \leq n} A_{i_1} \mathbf{X}_{i_1}^\top \boldsymbol{\Sigma}^{-1} \mathbf{X}_{i_2} A_{i_2} \\ &=: \mathbb{U}_{n,2}[A_1 \mathbf{X}_1^\top \boldsymbol{\Sigma}^{-1} \mathbf{X}_2 A_2] \end{aligned} \quad (4)$$

We then plug the moment estimators from (4) into the identification equations (3) and solve the system to obtain the estimator for the parameter of interest.

$$\begin{aligned} \widehat{\gamma}_{\boldsymbol{\alpha}}^2 &= \Psi^{-1}(\widehat{m}_{\mathbf{X}A,2}) \\ \widehat{\boldsymbol{\alpha}}_j &= \frac{\widehat{m}_{\alpha_j}}{f_1(0, \widehat{\gamma}_{\boldsymbol{\alpha}}^2)} \end{aligned} \quad (5)$$

Estimation in Case II

Since $\boldsymbol{\mu}$ is unknown in Case II, the identification equations are as follows:

Identification Equations for Unknown $\boldsymbol{\mu}$

$$\begin{aligned} m_A &:= \mathbb{E}[A] = f_0(\boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \gamma_{\boldsymbol{\alpha}}^2), \\ m_{\mathbf{X},2} &:= \mathbb{E}[\mathbf{X}^\top \boldsymbol{\Sigma}^{-1} \mathbf{X}] = \boldsymbol{\mu}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}, \\ m_{\mathbf{X}A,\mathbf{X}} &:= \mathbb{E}[A \mathbf{X}^\top \boldsymbol{\Sigma}^{-1} \mathbf{X}] = \boldsymbol{\mu}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \\ &= m_A \cdot \boldsymbol{\lambda}_{\boldsymbol{\alpha}} + f_1(\boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \gamma_{\boldsymbol{\alpha}}^2) \cdot \boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \\ m_{\mathbf{X}A,2} &:= \mathbb{E}[A \mathbf{X}^\top \boldsymbol{\Sigma}^{-1} \mathbf{A}] = \\ &= m_A^2 \cdot m_{\mathbf{X},2} + f_1^2(\boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \gamma_{\boldsymbol{\alpha}}^2) \cdot \gamma_{\boldsymbol{\alpha}}^2 + \\ &\quad 2 \cdot m_A \cdot f_1(\boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \gamma_{\boldsymbol{\alpha}}^2) \cdot \boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \\ m_{\nu_j} &:= \mathbb{E}[\mathbf{X}^\top \boldsymbol{\Sigma}^{-1} \mathbf{e}_j] = \boldsymbol{\mu}^\top \boldsymbol{\Sigma}^{-1} \mathbf{e}_j = \nu_j, \\ m_{\alpha_j} &:= \mathbb{E}[A \mathbf{X}^\top \boldsymbol{\Sigma}^{-1} \mathbf{e}_j] \\ &= f_0(\boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \gamma_{\boldsymbol{\alpha}}^2) \cdot \nu_j + f_1(\boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \gamma_{\boldsymbol{\alpha}}^2) \cdot \boldsymbol{\alpha}_j. \end{aligned} \quad (6)$$

The first four moments in (6) can be reduced to two equations, which form a diffeomorphism map Ψ_{GLM} :

Reduced Identification Equations for Unknown $\boldsymbol{\mu}$

$$\begin{aligned} m_1 &:= m_A = f_0(\boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \gamma_{\boldsymbol{\alpha}}^2), \\ m_2 &:= m_{\mathbf{X}A,2} + m_A^2 \cdot m_{\mathbf{X},2} - 2 \cdot m_A \cdot m_{\mathbf{X}A,\mathbf{X}} \\ &= f_1^2(\boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \gamma_{\boldsymbol{\alpha}}^2) \cdot \gamma_{\boldsymbol{\alpha}}^2, \\ \Psi_{GLM} : (\boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \gamma_{\boldsymbol{\alpha}}^2) &\rightarrow (m_1, m_2). \end{aligned} \quad (7)$$

Since $\boldsymbol{\Sigma}$ is known in Case II:

Moment Estimators for Unknown $\boldsymbol{\mu}$

$$\begin{aligned} \widehat{m}_1 &:= \widehat{m}_A := \mathbb{U}_{n,1}[A], \\ \widehat{m}_2 &:= \widehat{m}_{\mathbf{X}A,2} + \widehat{m}_A^2 \cdot \widehat{m}_{\mathbf{X},2} - 2 \cdot \widehat{m}_A \cdot \widehat{m}_{\mathbf{X}A,\mathbf{X}}, \\ \text{where } \widehat{m}_{\mathbf{X},2} &:= \mathbb{U}_{n,2}[\mathbf{X}_1^\top \boldsymbol{\Sigma}^{-1} \mathbf{X}_2], \\ \widehat{m}_{\mathbf{X}A,\mathbf{X}} &:= \mathbb{U}_{n,2}[A_1 \mathbf{X}_1^\top \boldsymbol{\Sigma}^{-1} \mathbf{X}_2], \\ \widehat{m}_{\mathbf{X}A,2} &:= \mathbb{U}_{n,2}[A_1 \mathbf{X}_1^\top \boldsymbol{\Sigma}^{-1} \mathbf{X}_2 A_2], \\ \widehat{m}_{\nu_j} &:= \mathbb{U}_{n,1}[\mathbf{X}^\top \boldsymbol{\Sigma}^{-1} \mathbf{e}_j], \\ \widehat{m}_{\alpha_j} &:= \mathbb{U}_{n,1}[A \mathbf{X}^\top \boldsymbol{\Sigma}^{-1} \mathbf{e}_j]. \end{aligned} \quad (8)$$

We then plug the moment estimators from (8) into the reduced identification equations (7):

$$\begin{aligned} (\widehat{\boldsymbol{\lambda}}_{\boldsymbol{\alpha}}, \widehat{\gamma}_{\boldsymbol{\alpha}}^2) &:= \Psi_{GLM}^{-1}(\widehat{m}_1, \widehat{m}_2), \\ \widehat{\boldsymbol{\alpha}}_j &:= \frac{\widehat{m}_{\alpha_j} - f_0(\widehat{\boldsymbol{\lambda}}_{\boldsymbol{\alpha}}, \widehat{\gamma}_{\boldsymbol{\alpha}}^2) \cdot \widehat{m}_{\nu_j}}{f_1(\widehat{\boldsymbol{\lambda}}_{\boldsymbol{\alpha}}, \widehat{\gamma}_{\boldsymbol{\alpha}}^2)}. \end{aligned} \quad (9)$$

Estimation in Case IV

Now, we apply the methods discussed above to the Missing Data setting, also considered in [1].

Here, the observed data are $(A_i, X_i, A_i \cdot Y_i)_{i=1}^n$, and the parameter of interest is $\psi := \mathbb{E}[Y] = \mathbb{E}[\boldsymbol{\beta}^\top \mathbf{X}] = \boldsymbol{\beta}^\top \boldsymbol{\mu}$.

Identification Equations

Equations in (7), plus two additional equations:

$$\begin{aligned} m_{AY} &:= \mathbb{E}[AY] = m_A \cdot \psi + f_1(\boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \gamma_{\boldsymbol{\alpha}}^2) \cdot \gamma_{\alpha, \beta}, \\ m_{\mathbf{X}AY, \mathbf{X}} &:= \mathbb{E}[Y \mathbf{X}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}] \\ &= (m_A + m_{\mathbf{X}A, \mathbf{X}}) \cdot \psi + \\ &\quad \{m_{\mathbf{X}, 2} \cdot f_1(\boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \gamma_{\boldsymbol{\alpha}}^2) + f_2(\boldsymbol{\lambda}_{\boldsymbol{\alpha}}, \gamma_{\boldsymbol{\alpha}}^2) \cdot \boldsymbol{\lambda}_{\boldsymbol{\alpha}}\} \cdot \gamma_{\alpha, \beta}, \end{aligned} \quad (12)$$

where $\gamma_{\alpha, \beta} := \boldsymbol{\alpha}^\top \boldsymbol{\Sigma} \boldsymbol{\beta}$.

As in [1], we use the knowledge of $\boldsymbol{\Sigma}$, so the additional moment estimators are the same as those in (8), and the final estimator follows similarly. Comparison below:

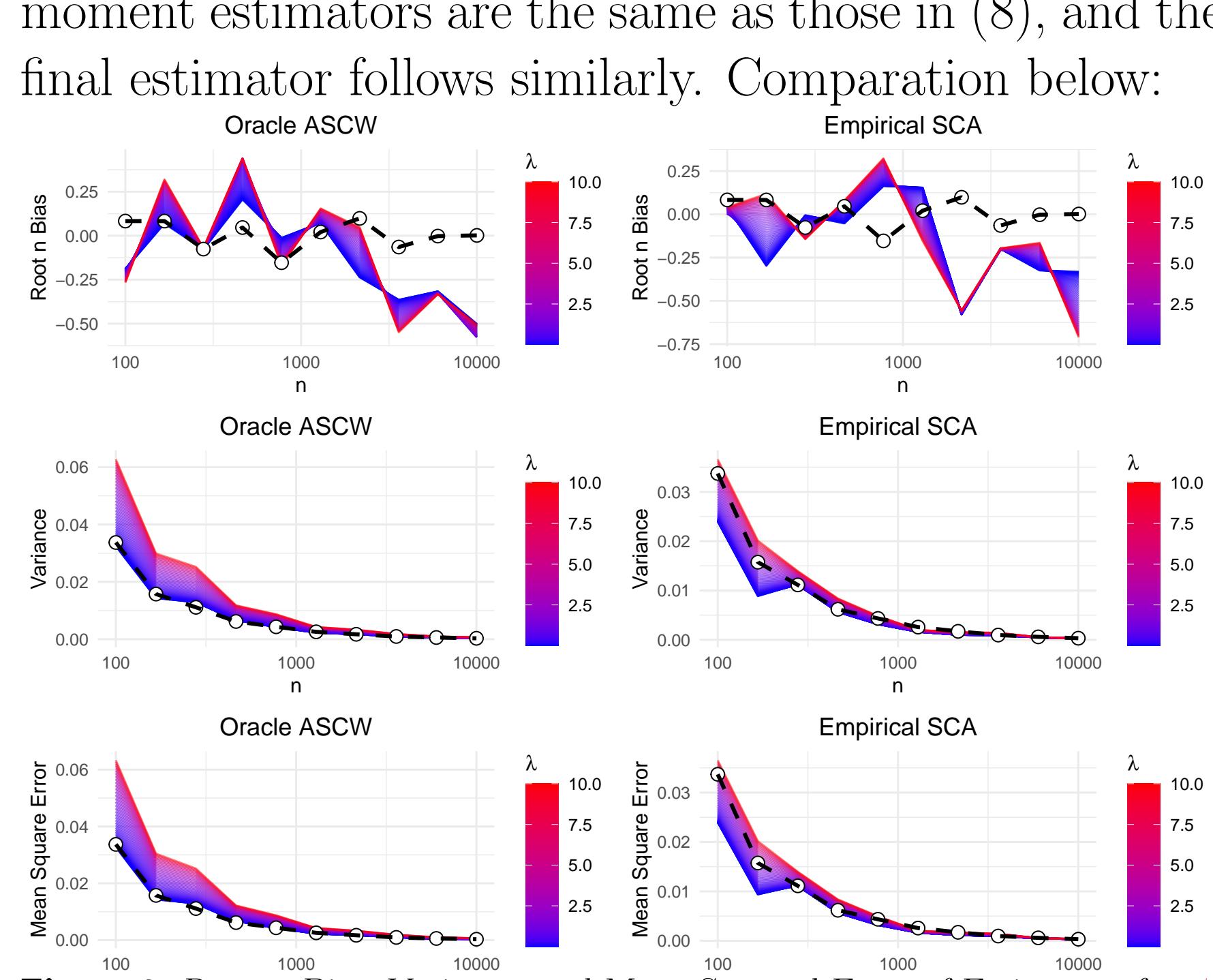


Figure 2: Root- n -Bias, Variance, and Mean Squared Error of Estimators for ψ , comparing our method with two Ridge regression-based methods from [1].

Theorem (Informal), Gaussian, CAN

When $\boldsymbol{\Sigma}$ is known, under some mild conditions, the above estimators are all \sqrt{n} -consistent.

Further assume that $\sqrt{p}\boldsymbol{\Sigma}^{-1/2}\boldsymbol{\mu}$, $\sqrt{p}\boldsymbol{\Sigma}^{-1/2}\boldsymbol{\alpha}$, and $\sqrt{p}\boldsymbol{\Sigma}^{-1/2}\boldsymbol{\beta}$ and their inner products with respect to $\boldsymbol{\Sigma}^{-1}$, $\boldsymbol{\Sigma}$, $\boldsymbol{\Sigma}^2$, $\boldsymbol{\Sigma}^3$ converge to a nontrivial distribution. Then, the above estimators, after scaling by \sqrt{n} , converge to a normal distribution.

When $\boldsymbol{\Sigma}$ is unknown, for the method in (10), which requires $\frac{n}{2} > p + 3$, we can show that our method is \sqrt{n} -consistent. For the method in (11), we can show that our method is consistent.

Theorem (Informal), Universality