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Introduction

Estimation in Case 1

Estimation in Case 11

Problem Setting and Questions:

o Samples: (A; € R, X; € RP) K P

e The distribution P is parameterized as:
X ~Px, EA|X)=¢(a'X), var(A|X)=c*X)
where X has mean p and covariance 2

e Asymptotic regime: P Lse 0,+00) as n — o
n

How can we conduct inference on o
How can we conduct inference on |||l = a' Xa?
- How can we conduct inference on other functionals?

We focus on four settings, ranging from simple to com-
plex, to introduce our methodology:

e Case I (Gaussian, known g = 0 & known X):
X ~ N,(0,%), p =0, 3 is known
e Case II (Gaussian, unknown g & known X):

X ~ Ny(p, 32), p is unknown, ¥ is known

e Case III (Gaussian, unknown g & unknown X):
X ~ N,(pe, 32), both p and 32 are unknown

e Case IV (Missing Data):
X ~ Ny(p, ¥), p is unknown, X is known.
In addition, we observe (Y;)™, with E[Y;|X;] = 8'X,
and assume A LY | X,
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Figure 1: Root-n bias, variance, and mean squared error of estimators for oy

and a9 under different assumptions on g and X, with p/n = 0.4.

Estimation in Case 111

In Case III, the identification equations remain the same
as in Case 11, i.e.,

Identification Equations for Unknown p

Same as ([7).

The knowledge of 32 influences the construction of mo-
ment estimators. We propose two methods to address
this, each with theoretical guarantees.

One method involves using a sample splitting strategy
with weighted sample covariance:

Moment Estimators Unknown 3 (Sample Splitting)
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Another method uses Chebyshev polynomials to approx-
imate X7

Lemma 1 (Stein’s Lemma) Let X ~ N(u,X) and
let :RP — R be a differentiable function such that
all expectations below are finite. Then:

EXf(X)]=ZEVAX)]+Ef(X)lp (1)
For f(X) = ¢(a' X), we have:

E[XA] = E[X ¢(aX)| = E[¢/(Z)] S a + E[f(X)(]lg
2

Here and below, Z ~ a'X ~ N(a'w, ||als), with
Ao = o' p and = ||a||%. We define f;(A\o, ) =
E[6"(2)]

Since g = 0 in Case I

Identification Equations for g = 0

Hlaj = E[AXT]E_lej = fl(O, )Oﬁj,
111X A 2 = E[A1XIE_1X2AQ] — fl(O, )2 y ’yz =. \If( )

Since Y is known in Case I, we construct U-statistics to

unbiasedly estimate the required moments:

Moment Estimators for g = 0

1<i1#19<n

—. UmQ [A1XIE_1X2A2]

We then plug the moment estimators from (4) into the
identification equations (B) and solve the system to ob-
tain the estimator for the parameter of interest.

V2 = U~ (xa,)

- Mg, 5

Olj = /j\ ( )
£,(0,v2)

Estimation in Case 1V

Now, we apply the methods discussed above to the Miss-

ing Data setting, also considered in [1].
Here, the observed data are (A;, X;, 4; - Y;)",, and the
parameter of interest is v = E[Y] =E[3'X] = 8" u

Identification Equations

Equations in (I7), plus two additional equations:
may = EAY | =ma -+ 1A, 7)) - ,
mxayx = E[Y AX' |

= (ma + mXij) P+ (12)
{mX,Z 11 (Aas 70) + f2( Ay ) - )\a} '

where

As in [1], we use the knowledge of X, so the additional

moment estimators are the same as those in (8), and the

final estimator follows similarly. Comparation below:
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Figure 2: Root-n"Bias, Variance, and Mean Squared Errdr of Estimators for ),
comparing our method with two Ridge regression-based methods from [T].
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Since w 1s unknown in Case 11, the identification equa-
tions are as follows:

Identification Equations for Unknown p

ma = E[A] = f(\a, 12),
mx., = EX'ZS7EX] =pu'S 'y,
mxax = E[AX'|S'E[X]
= Mm4-mx2+ fl()\a, ) c Nevs
mxas = E[AX ]S 'E[AX]
= mi " INX 2 + f%()\a, ) y +
2-ma-ti(Aa, 7)) - Aa,
m, =E[X]'S e, =pu'S'e;=v'e; =y,
Me, = E[AX']X e,
= fo(Aa, 70) - Vi + (A, 70) - @y

The first four moments in (6) can be reduced to two
equations, which form a diffeomorphism map Ve

Reduced Identification Equations for Unknown g

My, = 1My = fo()\a, ),

Mo = Mx A2+ My Mx2— 2 M4 MXAX
— f12<)‘0é7 ) ' ;

\DGLM ) ()\a, ) —> (ml,mg).

(7)

Since X2 is known in Case II:

Moment Estimators for Unknown g

S

my =my = U, 1[A]

My = A2‘|‘mA Mmx2— 2 My - MxXAX,
where fix o = U, »[X| 27'X],

MXAX = Un,2[A1X1TE_1X2], (8)
Mixas = Uy o[ A1 X Z71X, 49,

My, = U, [X']E ey,

Ma, = U, [AX ' ]|E e,

m
m

We then plug the moment estimators from (8) into the
reduced identification equations ([7):

N

()\aﬁ?x) = \PGLM(mlv ms),
~ aj — fO()\aa T ) ' muj (9)
Oﬁj — ~ 5 .

fl()\aa Ve )

Theorem (Informal), Gaussian, CAN

When 3 is known, under some mild conditions, the
above estimators are all y/n-consistent.

Further assume that \/]_92_1/2u, \/EZ_l/Qa, and
\/]_92_1/ 23 and their inner products with respect to
>-1 3. 32 39 converge to a nontrivial distribution.
Then, the above estimators, after scaling by +/n,
converge to a normal distribution.

When ¥ is unknown, for the method in (T0), which
requires 5 > p + 3, we can show that our method is
v/n-consistent. For the method in (1), we can show
that our method 1s consistent.

Theorem (Informal), Universality

When X violates the Gaussian distribution, but
>~1/2(X — p) has zero mean and unit variance, the
above identification equations (B), (6) hold with error

@, (n‘3/4) .

Thus, the above consistent results for the (Gaussian

model will still hold.

Variance Estimator
We use a bootstrap method to estimate the variance

of the U-statistics and then apply the Delta method to
estimate the variance of the parameters of interest.
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