
1/ 33

On Computing and the Complexity of Computing
Higher-Order U-Statistics, Exactly

陈星宇
上海交通大学
数学科学学院

Email: xingyuchen0714@sjtu.edu.cn

中国现场统计研究会统计交叉科学研究分会
全国工业统计学教学研究会民族统计与数据科学分会 2025 联合年会

2025 年 9 月 20 日

2/ 33

Coauthors

刘林, 上海交通大学 张瑞琦, 华东师范大学

3/ 33

Outline

On Computing U-Statistics

On Complexity of Computing U-Statistics

Applications

Limitations and Future Work

4/ 33

U/V-Statistics

U-statistics are generally used to construct unbiased estimators of population
parameters.
▶ Given a kernel h(x1, . . . , xm) : Xm → R and a sequence of samples

X1, . . . ,Xn.
▶ The U-statistic takes the form

Un,m[h] =
����n!
(n−m)!

∑
1≤i1 ̸=i2 ̸=···̸=im≤n

h(Xi1 , . . . ,Xim).

▶ The V-statistic takes the form

Vn,m[h] =
�
�1

nm

∑
1≤i1,i2,··· ,im≤n

h(Xi1 , . . . ,Xim).

▶ There is a linear relationship between U-statistics and V-statistics

U =
∑

V,V =
∑

U.

Thus, if V can be computed efficiently, then so can U, and vice versa.

5/ 33

The answer: V-statistics can be computed by Einsum

▶ Einsum can be used to compute the V-statistic efficiently.
▶ The Einsum operation mainly performs unconstrained summation

over selected indices of input tensors.
▶ Can call numpy.einsum or pytorch.einsum in practice.
▶ pytorch provides parallel computing on CPU and GPU.

▶ Examples:
Einsum('ij,jk->ik', A, B)∑

j AijBjk = Dik

Einsum('ijk->i', X)∑
j,k Xijk = Di

Einsum('ij,jk,kl->', A, B, C)∑
i,j,k Aij Bjk Ckl = D

▶ Then what’s the exact formula of the U =
∑

V?

https://numpy.org/doc/2.1/reference/generated/numpy.einsum.html
https://pytorch.org/docs/stable/generated/torch.einsum.html
https://pytorch.org/

6/ 33

Decomposition of U-statistics to V-statistics

▶ The exact formula can be written as following:
▶ The proof will use the Möbius inversion technique.

Lemma 1 (C., Zhang, Liu, 25)
Let X be a non-empty set and h : Xm → R be a kernel function. Then for any
X ∈ Xn : n ≥ m,

U[h] =
∑

π∈Πm

µπV[π](h),

where

µπ = (−1)(m−|π|)
∏
C∈π

(|C| − 1)!,

and Πm denotes all partition of set {1, 2, · · · ,m}.

7/ 33

Decomposition of U-statistics to V-statistics

▶ The definition of V[π](h) is as following:

π = {{1}, {2}, {3}}, V[π](h) =
∑

i1,i2,i3

h(Xi1 ,Xi2 ,Xi3), µπ = +1,

π = {{1, 2}, {3}}, V[π](h) =
∑

i1=i2,i3

h(Xi1 ,Xi2 ,Xi3), µπ = −1,

π = {{1, 3}, {2}}, V[π](h) =
∑

i1=i3,i2

h(Xi1 ,Xi2 ,Xi3), µπ = −1,

π = {{2, 3}, {1}}, V[π](h) =
∑

i2=i3,i1

h(Xi1 ,Xi2 ,Xi3), µπ = −1,

π = {{1, 2, 3}}, V[π](h) =
∑

i1=i2=i3

h(Xi1 ,Xi2 ,Xi3), µπ = +2.

▶ For m = 3:

U[h] =
∑

i1 ̸=i2 ̸=i3

h(Xi1 ,Xi2 ,Xi3)

=
(∑

i1,i2,i3

−
∑

(i1=i2),i3

−
∑

(i1=i3),i2

−
∑

(i2=i3),i1

+2
∑

i1=i2=i3

)
h(Xi1 ,Xi2 ,Xi3).

8/ 33

Algorithm Framework

Basic Algorithm Framework

Input: Kernel function h, data samples X1, . . . ,Xn, order m
Output: U-statistic U[h]

1. Initialize U[h]← 0

2. For each partition π ∈ Πm:
2.1 Compute coefficient µπ

2.2 Compute V-statistic V[π](h) via Einsum
2.3 U[h]← U[h] + µπ · V[π](h)

3. Return U[h]

9/ 33

Outline

On Computing U-Statistics

On Complexity of Computing U-Statistics

Applications

Limitations and Future Work

10/ 33

New Questions Arising in Computing U-Statistics

The following questions naturally arise:

Question 1
How to characterize the computational complexity theoretically?
▶ The naive nested-loop approach requires O(nm).
▶ Can the new algorithm compute U-statistics in substantially less than

O(nm) time?

Question 2
The number of all set partitions π ∈ Πm is large, given by the Bell number Bm.
Do we really need so many terms?
▶ Bm increases super-exponentially with m.
▶ For example:

B6 = 203, B7 = 877, B8 = 4140,

B9 = 21147, B10 = 115975.

Both answers will strongly depend on the structure of the kernel function h.

11/ 33

Example 1: U-Statistics in Causal Inference: HOIFs
▶ Higher-order influence functions (HOIFs) (Robins et al., 2008, 2016) are

rate-optimal estimators for many causal parameters.
▶ HOIFs are high order U-statistics, whose order can be up to m ∼

√
log n.

▶ For example, HOIF of the treatment-specific mean is the combination of
functions like

hHOIF
m (X1, . . . ,Xm)

= [a1ϕ(Z1)
⊤ϕ(Z2)][ϕ(Z2)

⊤ϕ(Z3)] · · · [ϕ(Zm−1)
⊤ϕ(Zm)bm]

= f1(X1,X2)f2(X2,X3) · · · fm−1(Xm−1,Xm)

▶ For Question 1, given the n× n matrices A(k)
ij = fk(Xi,Xj) for

k = 1, · · · ,m− 1:

Complexity(Un,m(hHOIF
m)) =


O(n2), m ∈ {2, 3},
O(n3), m ∈ {4, 5, 6, 7},
O(n4), m ∈ {8, 9, 10},
O(n5), m ∈ {11, 12}.

▶ For Question 2, some terms will be canceled.

12/ 33

Example 2: Dependence Measures

▶ High-order U-statistics are also used to estimate dependence measures,
such as Distance Covariance (dCov2) (Székely et al., 2007).

▶ dCov2 can be represented as a 4-th order U-statistic (Yao et al., 2018):

dCov2(X,Y) = (n− 4)!

n!
∑

i̸=j ̸=q ̸=r
aijbqr + aijbij − aijbiq − aijbjr

where aij = ∥Xi − Xj∥2 and bij = ∥Yi − Yj∥2.
▶ it can be decomposed to 3 kernel function:
▶ For Question 1, given the n× n matrices aij, bij:

Complexity(dCov2(XY)) = O(n2).

▶ For Question 2: Many terms will be canceled.

13/ 33

Example 3: Motif Counts

▶ Motif counts refer to the number of occurrences of small subgraphs
(motifs) in a random graph.

▶ They can be used to test certain properties of the underlying random
graphon (Chatterjee et al., 2024).

▶ The motif counts can also be written as a form similar to U-statistics.
▶ 3-node motifs,

3-node motifs in a random graph

14/ 33

Example 3: Motif Counts

▶ 4-node motifs,

4-node motifs in a random graph

15/ 33

Example 3: Motif Counts
▶ For example :

▶ V-shape

C(R1) =
1

2

∑
i1 ̸=i2 ̸=i3

Ai1 i2Ai2 i3Bi3 i1

▶ Triangle:

C(R2) =
1

6

∑
i1 ̸=i2 ̸=i3

Ai1 i2Ai2 i3Ai3 i1

▶ A is the adjacency matrix of the graph and B = 1− A.

▶ For Question 1, given adjacency matrix A, the complexity is still O(nm) for
m-motif.

▶ For Question 2, only 1 term is needed.

16/ 33

Key Assumption: Multiplicative-Decomposable

The key of answering the above questions is the multiplicative-decomposition
of kernels.
▶ We observed that many kernels of U-statistics is product of some functions

with less arguments.
▶ Let’s give a notation to capture this structure, it mimics the Einsum

notation ”ij,jk -> ”.
▶ For hHOIF

3 (X) = f1(X1,X2)f2(X2,X3):

AHOIF
3 = ((1, 2), (2, 3)),T(k)

ij = fk(X1,X2), k = 1, 2.

▶ For a part of dCov2(X,Y): (n−4)!
n!

∑
i ̸=j̸=q ̸=r aijbqr

AdCov,1 = ((1, 2), (3, 4)),T(1) = a,T(2) = b.

▶ For C(R1) =
1
2

∑
i1 ̸=i2 ̸=i3 Ai1 i2Ai2 i3Bi3 i1

AMotif
3 = ((1, 2), (2, 3), (3, 1)),T(1) = T(2) = A,T(3) = B.

16/ 33

Key Assumption: Multiplicative-Decomposable

The key of answering the above questions is the multiplicative-decomposition
of kernels.
▶ We observed that many kernels of U-statistics is product of some functions

with less arguments.
▶ Let’s give a notation to capture this structure, it mimics the Einsum

notation ”ij,jk -> ”.
▶ For hHOIF

3 (X) = f1(X1,X2)f2(X2,X3):

AHOIF
3 = ((1, 2), (2, 3)),T(k)

ij = fk(X1,X2), k = 1, 2.

▶ For a part of dCov2(X,Y): (n−4)!
n!

∑
i ̸=j̸=q ̸=r aijbqr

AdCov,1 = ((1, 2), (3, 4)),T(1) = a,T(2) = b.

▶ For C(R1) =
1
2

∑
i1 ̸=i2 ̸=i3 Ai1 i2Ai2 i3Bi3 i1

AMotif
3 = ((1, 2), (2, 3), (3, 1)),T(1) = T(2) = A,T(3) = B.

16/ 33

Key Assumption: Multiplicative-Decomposable

The key of answering the above questions is the multiplicative-decomposition
of kernels.
▶ We observed that many kernels of U-statistics is product of some functions

with less arguments.
▶ Let’s give a notation to capture this structure, it mimics the Einsum

notation ”ij,jk -> ”.
▶ For hHOIF

3 (X) = f1(X1,X2)f2(X2,X3):

AHOIF
3 = ((1, 2), (2, 3)),T(k)

ij = fk(X1,X2), k = 1, 2.

▶ For a part of dCov2(X,Y): (n−4)!
n!

∑
i ̸=j̸=q ̸=r aijbqr

AdCov,1 = ((1, 2), (3, 4)),T(1) = a,T(2) = b.

▶ For C(R1) =
1
2

∑
i1 ̸=i2 ̸=i3 Ai1 i2Ai2 i3Bi3 i1

AMotif
3 = ((1, 2), (2, 3), (3, 1)),T(1) = T(2) = A,T(3) = B.

17/ 33

The Answer to Question 2 : Sparsification
For Question 2 (Sparsification trick):
▶ For hHOIF

3 (X) = f1(X1,X2)f2(X2,X3), let

T(k)
ij = f1(Xi,Xj), k = 1, 2.

T̃(k)
ij =

{
T(1)

ij if i ̸= j
0 if i = j

, k = 1, 2.

▶ Then we have

U[hHOIF
3]

=
∑

i1 ̸=i2 ̸=i3

T(1)
i1 i2T(2)

i2 i3

=
∑

i1 ̸=i2 ̸=i3

T̃(1)
i1 i2 T̃(2)

i2 i3

=
(∑

i1,i2,i3

−
∑

(i1=i2),i3

−
∑

(i1=i3),i2

−
∑

(i2=i3),i1

+2
∑

i1=i2=i3

)
T̃(1)

i1 i2 T̃(2)
i2 i3

=
(∑

i1,i2,i3

−
�
�

��
∑

(i1=i2),i3

−
∑

(i1=i3),i2

−
�
�
��

∑
(i2=i3),i1

+

�
�

��2
∑

i1=i2=i3

)
T̃(1)

i1 i2 T̃(2)
i2 i3

18/ 33

The Answer to Question 2 : Sparsification
For Question 2 (Sparsification trick):
▶ In general,let

ΠA
m = {π ∈ Πm | ∀Q ∈ π, ∀A ∈ A, |Q ∩ set[A]| < 2}.

▶ We just need to sum over π ∈ ΠA
m .

Order (m) V-stat terms
(Bell number)

V-stat terms
(Sparsification) Ratio

3 5 2 0.4
4 15 5 0.333
5 52 15 0.288
6 203 52 0.256
7 877 203 0.231
8 4140 877 0.212
9 21147 4140 0.196
10 115975 21147 0.182
11 678570 115975 0.171
12 4213597 678570 0.161

Table: The Sparsification trick on HOIF

19/ 33

Algorithm Framework & Implementation
Updated Algorithm Framework

Input: decomposition signature A, corresponding diagonal-excluded
tensors T̃(1), T̃(2), · · ·
Output: U-statistic U[h]

1. Initialize U[h]← 0

2. Get m from A
3. For each partition π ∈ ΠA

m :
3.1 Compute coefficient µπ

3.2 Compute V-statistic V[π](h) via Einsum with T̃(1), T̃(2), · · ·
3.3 U[h]← U[h] + µπ · V[π](h)

4. Return U[h]

Our new package u-stats for computing U-statistics is available on PyPI:

https://pypi.org/project/u-stats/

Install via:

pip install u-stats

https://github.com/Amedar-Asterisk/U-Statistics-python
https://pypi.org/project/u-stats/

20/ 33

The Answer to Question 1: Complexity
For Question 1 (Complexity):
▶ For hHOIF

3 (X) = f1(X1,X2)f2(X2,X3), recall

U[hHOIF
3]

=
∑

i1,i2,i3

T̃(1)
i1 i2 T̃(2)

i2 i3 −
∑
i1,i2

T̃(1)
i1 i2 T̃(2)

i2 i1

▶ Consider the first part, with Aπ1 = ((1, 2), (2, 3)).
Order (1→ 2→ 3):∑
i1,i2,i3

T̃(1)
i1 i2 T̃(2)

i2 i3
O(n2)−−−−−−→

sum over i1

∑
i2,i3

T̃(3)
i2 T̃(2)

i2 i3

O(n2)−−−−−−→
sum over i2

∑
i3

T̃(4)
i3

O(n)−−−−−−→
sum over i3

Final Result

⇒ max complexity = O(n2)

Order (2→ 1→ 3):∑
i1,i2,i3

T̃(1)
i1 i2 T̃(2)

i2 i3
O(n3)−−−−−−→

sum over i2

∑
i1,i3

T̃(5)
i1 i3

O(n2)−−−−−−→
sum over i1

∑
i3

T̃(6)
i3

O(n)−−−−−−→
sum over i3

Final Result

⇒ max complexity = O(n3)

21/ 33

The Answer to Question 1: Complexity

Procedure of Computing a 4-th order V-statistic with A = ((1, 2), (2, 3), (3, 4))

22/ 33

The Answer to Question 1: Complexity

▶ In general, the computational complexity of a V-statistics depends on the
summation ordering.

▶ The optimal ordering corresponding to the treewidth of the
corresponding graph G. precisely O(ntw(G)+1).

▶ Finding the optimal ordering is known to be NP-hard.

▶ In practice, heuristic algorithm such as greedy algorithm is used.

▶ In the low-order case, the proof can be derived manually.

▶ For U-statistics, the computational complexity is determined by the
maximum treewidth across all graphical representations induced by the
corresponding V-statistics.

23/ 33

Outline

On Computing U-Statistics

On Complexity of Computing U-Statistics

Applications

Limitations and Future Work

24/ 33

Application 1: Higher-Order Influence Functions

▶ HOIFs involve computing a class of U-statistics like

hHOIF
m (X1, . . . ,Xm) = f1(X1,X2)f2(X2,X3) · · · fm−1(Xm−1,Xm)

▶ We test u-stats on computing HOIFs on platforms both in CPU and
GPU (with pytorch).

▶ For CPU
Table: Average runtime (in seconds) using CPU parallel computation. Experiments
were conducted on Intel Xeon ICX Platinum 8358 CPUs (2.6GHz, 64 total cores) with
512 GB of memory, evaluated across varying sample sizes and orders of HOIF-type
U-statistics.

m\n 1000 2000 4000 8000 10000
2 0.64 0.00141 0.01298 0.03174 0.04746
3 0.00396 0.01518 0.07392 0.26849 0.45976
4 0.02321 0.07313 0.32765 2.09545 2.36766
5 0.09853 0.36239 1.71419 9.11349 14.21350
6 0.38878 1.47719 7.44444 40.22143 58.85063
7 1.91677 6.75947 34.08805 195.31414 290.54295

https://github.com/Amedar-Asterisk/U-Statistics-python
https://pytorch.org/

25/ 33

Application 1: Higher-Order Influence Functions

▶ For GPU
Table: Average runtime (in seconds) using a single GPU (NVIDIA RTX 4090, 24GB)
with parallel computation, across varying sample sizes and orders of HOIF-type
U-statistics.

m\n 1000 2000 4000 8000 10000
2 0.00184 0.00151 0.00155 0.00238 0.00339
3 0.00172 0.00147 0.00193 0.00577 0.00745
4 0.00305 0.00353 0.00707 0.03612 0.06245
5 0.00835 0.01089 0.03456 0.19807 0.36160
6 0.02608 0.03906 0.16981 1.12072 2.13328
7 0.12031 0.19132 0.91884 6.45225 12.21350

26/ 33

Application 2: Distance Covariance

▶ We also test our algorithm on computing dCov2

dCov2(X,Y) = (n− 4)!

n!
∑

i̸=j̸=q ̸=r
aijbqr + aijbij − aijbiq − aijbjr

▶ We compare the performance with Shao et al. (2025), n = 138.
▶ They use a randomized incomplete algorithm to compute dCov2.
▶ α is a tuning parameter to control the degree of completeness.
▶ Randomized algorithm of α takes O(nα) time.

Table: Runtime (in seconds) comparison of various methods for computing dCov2.
Experiments were run on Intel Xeon ICX Platinum 8358 CPUs (2.6GHz, 64 total
cores) with memory of 512 GB.

u-stats Shao et al. (2025)’s MATLAB code

No Parallel Parallel Randomized
α = 1.5

Randomized
α = 2.0

Randomized
α = 2.5

Complete

4.0928 0.1847 0.4211 4.5744 53.0265 3395.4001

https://github.com/Amedar-Asterisk/U-Statistics-python

27/ 33

Application 3: Motif Counts

▶ We compare the performance of our u-stats with igraph.

▶ On Erdős-Rényi graphs G(n, p):
▶ n is the number of vertices.

▶ p is the probability of edge existence.

▶ CPU parallel with 64 cores via pytorch for u-stats.

▶ Count all types of 3-node or 4-node motifs.

https://github.com/Amedar-Asterisk/U-Statistics-python
https://igraph.org/
https://pytorch.org/
https://github.com/Amedar-Asterisk/U-Statistics-python

28/ 33

Application 3: Motif Counts

▶ For the 3-node motifs,

Table: Runtime comparison of exact all 3-node motif counts using u-stats and
igraph on Erdős-Rényi graphs G(n, p) with n = 5623. Experiments were run on Intel
Xeon ICX Platinum 8358 CPUs (2.6GHz, 64 total cores) with 512 GB of memory.
”Speedup ratio” compares igraph to our parallel method; ”single core speedup”
assumes single-core execution.

Edge
Prob. p

u-stats
Time (s)

igraph
Time (s)

Speedup
Ratio

Single-Core
Speedup

0.001 0.617 0.025 0.040 0.001
0.005 0.649 0.353 0.544 0.008
0.010 0.692 1.795 2.595 0.041
0.020 0.783 10.594 13.529 0.211
0.050 1.038 136.272 131.288 2.051
0.080 1.298 514.702 396.415 6.194
0.100 1.453 960.299 660.690 10.323
0.150 1.864 3003.490 1611.389 25.178
0.200 2.275 6725.515 2955.656 46.182

29/ 33

Application 3: Motif Counts

▶ For the 4-node motifs,

Table: Runtime comparison of exact all 4-node motif counts using u-stats and
igraph on Erdős-Rényi graphs G(n, p) with n = 2000. Experiments were run on Intel
Xeon ICX Platinum 8358 CPUs (2.6GHz, 64 total cores) with 512 GB of memory.
”Speedup ratio” compares igraph to our parallel method; ”single core speedup”
assumes single-core execution.

Edge
Prob. p

u-stats
Time (s)

igraph
Time (s)

Speedup
Ratio

Single-Core
Speedup

0.001 70.959 0.004 0. 0.
0.005 71.947 0.168 0.002 0.
0.010 68.463 1.453 0.021 0.
0.020 65.634 15.573 0.237 0.004
0.050 65.786 394.532 5.997 0.094
0.080 66.866 2371.373 35.465 0.554
0.100 68.219 5396.057 79.099 1.236
0.150 65.969 23003.041 348.692 5.448
0.200 65.259 61796.760 946.940 14.796

30/ 33

Outline

On Computing U-Statistics

On Complexity of Computing U-Statistics

Applications

Limitations and Future Work

31/ 33

Limitations and Future Work

▶ Limitations:
▶ Memory usage is high: for HOIFs, it’s not available for sample size

larger than 2000 and order larger than 8 – Hybrid between for-loop &
Einsum (or we can wait for better GPUs)?

▶ How to combine our techniques with randomized incomplete
U-statistics (Chen and Kato, 2019; Shao et al., 2025)?

▶ Future work:
▶ Interface for R.
▶ Non-scalar-valued U-statistics.

32/ 33

References
Anirban Chatterjee, Soham Dan, and Bhaswar B Bhattacharya. Higher-order

graphon theory: Fluctuations, degeneracies, and inference. arXiv preprint
arXiv:2404.13822, 2024.

Xiaohui Chen and Kengo Kato. Randomized incomplete U-statistics in high
dimensions. The Annals of Statistics, 47(6):3127–3156, 2019.

James Robins, Lingling Li, Eric Tchetgen Tchetgen, and Aad van der Vaart.
Higher order influence functions and minimax estimation of nonlinear
functionals. In Probability and Statistics: Essays in Honor of David A.
Freedman, pages 335–421. Institute of Mathematical Statistics, 2008.

James Robins, Lingling Li, Eric Tchetgen Tchetgen, and Aad van der Vaart.
Technical report: Higher order influence functions and minimax estimation of
nonlinear functionals. arXiv preprint arXiv:1601.05820, 2016.

Meijia Shao, Dong Xia, and Yuan Zhang. U-statistic reduction: Higher-order
accurate risk control and statistical-computational trade-off. Journal of the
American Statistical Association, pages 1–14, 2025.

Gábor J Székely, Maria L Rizzo, and Nail K Bakirov. Measuring and testing
dependence by correlation of distances. The Annals of Statistics, 35(6):
2769–2794, 2007.

Shun Yao, Xianyang Zhang, and Xiaofeng Shao. Testing mutual independence
in high dimension via distance covariance. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 80(3):455–480, 2018.

33/ 33

Thank You!
For more details:

▶ Paper draft (arXiv):
https://arxiv.org/abs/2508.12627

▶ Software (GitHub):
github.com/Amedar-Asterisk/U-Statistics-python

▶ Personal website:
cxy0714.github.io

https://arxiv.org/abs/2508.12627
https://github.com/Amedar-Asterisk/U-Statistics-python
https://cxy0714.github.io/

	On Computing U-Statistics
	On Complexity of Computing U-Statistics
	Applications
	Limitations and Future Work
	References
	References

